Blockchain-Enabled Redundant Fractionated Spacecraft
System

Mariana Alves, Justine Veirier D’Aiguebonne, Thibault Gateau and Jérome Lacan
Institut Supérieur de I’Aéronautique et de I’Espace (ISAE-SUPAERO),
Université de Toulouse,

31055 Toulouse, FRANCE
{mariana.de-andrade-dias-alves, justine.veirier-d-aiguebonne } @student.isae-supaero.fr
{thibault.gateau, jerome.lacan} @isae-supaero.fr

Abstract—Services and applications provided by satellites are
continuously improving in terms of quality and diversity, as
well as, their complexity. Resilience of traditional monolithic
spacecraft is achieved mainly through redundancy, which ex-
ponentially increases the complexity of their production, and
therefore, their cost. One solution would be to use fragmented
spacecraft systems. Redundancy is achieved by nature with
local complexity. Furthermore, scalability of such a system is
facilitated. However, data transfer and physical communication
link between the “fragments” must be addressed. The main
challenge of these systems is the management of the network
of satellites. Traditional centralised networks, managed by a
single entity, have been proven not to be secure, as they generate
a common point of failure, susceptible to attacks. Traditional
distributed networks, managed by multiple entities, require
honest participants and trust between entities, restricting collab-
orative mission applications. In the present article, a design for
a blockchain-enabled swarm fractionated system managed by
multiple trustless entities is proposed. The system is composed of
functionally different nano-satellites which perform tasks from
different subsystems in order to replicate the functionalities of
a monolithic spacecraft. The blockchain nodes are deployed
in the satellites and allow sharing of sensor data between the
network. A consensus protocol ensures the validity of the
shared data. The proposed system has been implemented and
evaluated on a local blockchain composed of four Ethereum
nodes. We believe that the proposed application opens the way
to new collaborative missions between entirely trustless parties,
ensuring transparency and cooperation within the system.

TABLE OF CONTENTS

1. INTRODUCTION . .iiiuteieeeenecanacasascsnscanscannas 1
2. DEFINITIONS AND STATE OF THE ART........cc..... 2
3. SECURED AND REDUNDANT FRACTIONATED
SPACECRAFT SYSTEM t.vieinrienncecerossacacasanes 4
4. USE CASE t.vtieineeneenrenrensensensescsscancascnsans 6
5. RESULTS cuttitieenteeceeeacacesescncasasescacacnnes 9
6. CONCLUSION ..iutiutensenseasssssossacascescnsanns 11
REFERENCES .itviutietsntontsnssssssssscescescnssnss 12

1. INTRODUCTION

Aerospace and computer engineering advancements have al-
lowed for miniaturisation in space systems. Sensing satel-
lites, for example, with the size of a large postage stamp and
a mass below 10 g, have been launched and tested in earth-
orbit [1]. CubeSat standard [2] has significantly decreased
production costs of nano-satellites, allowing smaller compa-
nies and universities to perform autonomous space system
missions [3]. However, hardware limitations restrict data

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

storage, processing power and transmission power in nano-
satellites, making them less resilient and powerful than their
larger counterparts.

Due to these limitations, multi-satellite or swarm systems
have grown in popularity [4]. These systems offer added re-
silience through the significant number of satellites involved.
Failure of a satellite in a swarm system does not compromise
the system’s mission and can be resolved by replacing the
satellite [5]. Additionally, since swarm systems do not have a
limited physical range, their performance in specified sensing
missions can be better than the performance of monolithic
satellites [6, 7]. Another appealing characteristic of swarm
systems is their interchangeability. Because different satel-
lites carry different payloads, it is possible to alter a given
satellite in the system in order to perform a different mission
[4]. Regarding accessibility in the space sector, swarm
systems also allow smaller players in the sector to perform
complex missions through collaborative projects. The main
challenge in these missions becomes the management of the
multi-entity system.

A common method to manage a network of satellites is the
use of a central entity which directly manages the whole
system and establishes an interface between the system and
all involved entities. However centralisation of the system
creates a point of failure, susceptible to attacks, and dimin-
ishes the advantages of using a multi-satellite system.

Significant research has been made regarding the implemen-
tation of distributed networks in swarm systems [6, 8—13]. In
such distributed networks, cooperation between spacecrafts
are necessary to accomplish missions. Cooperation involves
data sharing. However, an important issue in space activities
is the security in communications. Distributed systems are
susceptible to several attacks, such as illegal eavesdropping
on satellites, interception of missions through flooding of
the system with information (Denial-of-Service attacks) or
manipulation of results through feeding of false information,
etc. Therefore, in collaborative applications, a distributed
network tolerant to failures and attacks is required.

Due to its trustless nature, blockchain as been proposed
as a viable peer-to-peer network for multi-satellite systems
[4, 8, 14-22]. The blockchain network can be described as
a decentralised immutable database organised as a chain of
data blocks cryptographically linked. Its resilience is ensured
by a fault-tolerant consensus mechanism which synchronises
the data shared by all members of the network and manages
the member’s access to the network.

The objective of the current paper is to present a new ap-
plication for the blockchain network in a collaborative

multi-entity system. The system is composed of function-
ally different spacecrafts which perform tasks pertaining to
different subsystems of an equivalent monolithic spacecraft.
Each spacecraft embeds a node of the blockchain network and
data from every payload is shared by all members. Physical
resilience is ensured by the swarm, while security resilience
is ensured by the blockchain. The proposed application
opens the way to new collaborative missions between en-
tirely trustless parties, ensuring transparency and cooperation
within the system.

The document is organised as follows. In the next Section,
the main concepts of blockchain and swarm systems are
presented. In Section 3, the paper objectives are recalled and
the developed system is presented. In Section 4, a practical
scenario is presented with its implementation choices. In
Section 5, results of the implemented network are discussed.
In the final Section, the conclusion to the paper is presented
and future work is detailed.

2. DEFINITIONS AND STATE OF THE ART

In this section, the definitions of satellite swarm, followed by
blockchain are presented. After each definition, the state of
the art of the concept is presented.

Satellite Swarms

Multi-satellite missions, such as swarm missions, are defined
by NASA GSFC as follows: “An end-to-end system including
two or more space vehicles and a cooperative infrastructure
for science measurement, data acquisition, processing, anal-
ysis, and distribution.” [10] where the system’s vehicles are
also known as agents [12].

Although there is no consensus surrounding the definition of
swarm mission, their fundamental properties are (1) distribu-
tion, as tasks and data are shared amongst agents; (2) inter-
dependency between agents, as missions depend on cooper-
ation between agents; and (3) autonomy [23,24]. Sterritt et
al. [24] define the general objectives of an autonomic system
as self-configuration, self-healing, self-optimisation and self-
protection and the general attributes as self-awareness, self-
situation (environment & context awareness), self-monitoring
and self-adjusting.

Regarding distributed space systems, most research differ-
entiates constellations and formation flight satellites from
swarms, as the latter usually do not maintain a tight geometric
formation [10,25,26]. However, Engelen et al. [S] note that
navigation-wise, the requirements for a spacecraft swarm can
be as strict or even more strict than a formation flying mis-
sion, due to the dynamics of the system. The swarm changes
more rapidly than a fixed formation flight, and it is therefore
more important to have accurate navigation information per
element. Consequently, in the following work, the terms
“formation flight system” and “cluster” will be considered as
a synonym of a “swarm”.

A differentiating characteristic of swarm systems, when com-
pared to other multi-satellite systems, is that they involve a
large number of flight units [25]. The concept of swarm is,
therefore, said to focus on risk mitigation by fault-acceptance,
rather than fault tolerance. In the case of a satellite swarm,
risk mitigation is usually handled by the sheer number of
spacecraft, as the loss of a single element will not result
in a catastrophic failure [5] and can be resolved by the
replacement of the agent.

Fractionated Spacecraft— Fractionated Spacecraft Systems
can be seen as a subset of swarm systems as they allocate dif-
ferent mission functionalities to multiple flight units [25,27].
The idea behind this technology is to decompose the tradi-
tional integrated monolithic satellite into several functioning
modules. Its main advantages are, similarly to swarm systems
[28] :

« the reduction of costs associated with production. The in-
dependent functional modules used in fractionated spacecraft
can be mass produced and used in several different missions;
« the increased performance in specified applications. Due to
the increased area covered by a fractionated/swarm system,
unrestricted measurements are allowed and, consequently, a
higher measurement accuracy is obtained;

« the increased reliability. The failure of one functional mod-
ule does not compromise the mission as it can be substituted
by another.

All the aforementioned advantages contribute to the core ben-
efit of this technology: its increased potential for scalability.
Mathieu et al. [29] studied the impact of fractionation of
spacecraft through different mesures of scalability, including
“cost ratio between the additional scaled-down payload mod-
ule and the corresponding scaled-up traditional spacecraft”
and “’time necessary to get the increased performance level”,
and both parameters improved with fractionation.

The potential for increased survivability of these spacecraft
compared with monolithic spacecraft has triggered research
analysis on the possibility of converting current missions into
fractionated spacecraft missions.

ESA’s Report on Fractionated Satellites [30] details a com-
parative assessment between monolithic and fractionated
spacecraft in current LEO, GEO, L1 and planetary missions.
The report concludes that the most appropriate missions
for the conversion are LEO and GEO missions, where the
added propulsion is not significant. DARPA’s F6 Project
[31] aimed at demonstrating the feasibility and benefits of a
satellite architecture wherein the functionality of a traditional
monolithic spacecraft is delivered by a cluster of wirelessly-
interconnected modules capable of sharing their resources
and utilising resources found elsewhere in the cluster. How-
ever, on May 16, 2013, DARPA confirmed that the project
was closed without a flight demonstration. ANDESITE (Ad-
hoc Network Demonstration for Spatially Extended Satellite-
based Inquiry and Other Team Endeavors) [32] is a 6U
CubeSat with eight deployable picosatellites, which aims at
flying a local network of magnetometers through the electri-
cal currents that cause the Northern Lights.

Although no significant space demonstrations of fractionated
spacecraft have been made, the robustness provided by swarm
technology has contributed to the growing investment of the
space sector in these systems.

Satellite Swarm Applications—Satellite swarm is a concept of
distributed satellite, widely explored in the CubeSat context
[33]. Satellite swarms have been proposed for multiple earth
and deep-space exploration applications.

Regarding earth applications, swarm systems are mainly
used for synthetic aperture radars applications such as Earth
resource exploration, battlefield reconnaissance, natural dis-
aster surveillance, etc [6, 7], as well as distributed sensor
networks [34].

Regarding deep-space applications, swarm systems are
mainly proposed for antenna arrays [35,36] and exploration
missions on asteroids, comets or planetary moons [24,26,37].

Several challenges are faced by spacecraft swarms in different
applications such as available bandwidth for communications
[5], required formation due to tracking or communication re-
quirements [26], hardware limitations and processing power
limitations [23] in specified exploration mission require-
ments, and competition with large state-of-the-art monolithic
spacecraft [26].

Implementation of cooperation mechanism in swarms—Cur-
rent research on swarm technology has begun to focus on the
cooperation of agents towards finishing one complex mission
[8]. Pang et al. [6] and Araguz et al. [9] developed scheduling
algorithms to distribute tasks to agents and adapt to agent
failure. Farrag et al. [10] proposed relay-communication
agents to improve the communication of a swarm. Perez et
al. [11] proposed a consensus model to detect and correct
different faulty inputs in a satellite swarm. The consensus
model uses redundancy of data to detect different types of
errors. Izzo et al. [12] and Gazzi et al. [13] each proposed
different dynamical models for the movement of agents in a
swarm.

As the interest for increasingly autonomous multi-agent sys-
tems grows, swarm engineering research has leaned towards
distributed ledger implementations as a viable decentralised
approach [8]. Different distributed ledger technologies have
been developed, namely, blockchain, Tangle, Hashgraph and
Sidechain [38]. From the mentioned technologies, Hashgraph
presents some security and centralised issues, whereas Tangle
appears to be the most suitable for [oT applications. However,
it also suffers of security and centralisation problems related
to its implementation [38]. Therefore, blockchain seems
to be the most suitable system for the swarm/fractionated
spacecraft application.

Blockchain

A blockchain is a peer-to-peer network which can be de-
scribed as a shared, immutable and distributed ledger. The
ledger is stored and therefore visible by all participants,
called nodes, and cannot be modified without a mutual agree-
ment, which allows the establishment of a trusted transac-
tion/communication between distrusted entities without the
need for a centralised unit [21,39]. Through a blockchain,
any type of data, such as asset data or satellite commands, can
be shared via transactions which are stored in blocks. Each
block is composed of the hash (a cryptographic key) of the
previous block, a nonce, a timestamp, a transaction, and its
own hash, containing the previous hash. Consequently, the
ledger cannot be modified : the modification of one added
block will change its hash, resulting in the break of the chain
and the loss of the next blocks.

Blockchain types—Various types of blockchain exist depend-
ing on the level of privatisation required [15, 19] :

« a public blockchain, which allows anyone to participate,
join the network, read and exchange data. The most popular
public blockchains are Bitcoin, with the Bitcoin cryptocur-
rency, and Ethereum, with the Ether cryptocurrency.

« a private blockchain, which can control who participates,
joins the network, reads and exchanges data. These rules are
defined at the network’s creation.

Blockchain consensus mechanism—In order to obtain a dis-
tributed network and to eliminate all possibility of fraud [22],
blockchain works with a consensus mechanism that allows
the mutual agreement of all the nodes on the current state of
the blockchain [40] and to add new blocks in the blockchain
[41]. The most used protocol is Proof of Work (PoW), in
which each node competes on a mathematical problem to add
a new block [41]. However, PoW causes a huge waste of
computing resources [17]. Other protocols exist, such as :

 Proof of Stake (PoS), which considers the voting *weight’
of each node in the network. It drastically reduces the
resources usage and brings down transaction times [41] ;

o Proof of Authority (PoA), where only appointed trusted
nodes can maintain the blockchain [41]. However, this makes
the system less decentralised;

o Byzantine fault tolerance (BFT), a feature of a distributed
network to reach consensus even when some of the nodes in
the network, less than 33 %, fail to respond or respond with
incorrect information [41].

Smart Contracts—To secure and automate the data gener-
ating, storing, accessing and processing [19] in blockchain,
smart contracts are deployed on the network. A smart con-
tract is an irreversible program residing on the blockchain,
which encodes any set of rules for access control [19] and/or
predefined features of the blockchain.

Once deployed, a smart contract is identified by a contract
address which is used to call its functions. Nodes can trigger
the contracts by sending a transaction to the smart contract
address with a call of these functions and the required ar-
guments. The called functions will be executed (by all the
nodes maintaining the blockchain) with the current state of
the blockchain when this transaction is added in a block
[39,41]. Additionally, transactions always include a payment
for the execution. While reading functions are free, setting
functions have a cost.

Oracles— In several applications of blockchain in space,
the blockchain’s interaction with external sources is done
via transactions performed by users outside the blockchain,
requesting specific data contained in the network. However,
many applications built on blockchain need, themselves, to
interact with other external systems in order to update data
within the blockchain, enable a pending transaction which
requires external information, etc. Due to the blockchain’s
inability to recover information not present in the network,
a mechanism through which the blockchain is able to obtain
data from external sources was developed.

A blockchain oracle is a mechanism that fetches data from
the external world to include it in the isolated execution
environment of a blockchain [42]. The information, which
could range from sensor data to payment receipts or price
fluctuations, is fed through smart contracts and triggers pre-
defined actions. There are five different classifications of
oracles [43]:

o Software Oracles, which handle information data that orig-
inates from online sources, like temperature, prices of com-
modities and goods, flight or train delays, etc.

o Hardware Oracles, which provide information directly
from the physical world, for example, through movement or
RFID sensors.

e Inbound Oracles, which provide data from the external
world.

e Outbound Oracles, which provide smart contracts with the

ability to send data to the outside world.
« Consensus-based Oracles, which get their data from human
consensus and prediction markets.

A diagram of a generalised oracle is presented in figure 1.
The numbers indicate the order of the execution of functions.

1 2
=
Py
a oree] <@
Dt = A

Figure 1. Generic Oracle Mechanism.

Typically, an oracle mechanism starts with a user’s request
to a smart contract (1). In the request, the user must specify
the necessary data to trigger an oracle. Once triggered by a
smart contract (2), the oracle will fetch the data (3, 4) and
inject it in the blockchain through the execution of another
smart contract (5). Finally, the latter smart contract will
update the information requested (6). In the process of
fetching data (3,4), oracles publish events on the blockchain,
only accessible by external programs, which are in charge
of detecting these event publications in order to run specific
actions and call back functions of smart contracts when it is
necessary.

Because blockchain oracles are generally off-chain compo-
nents, the reliability properties of blockchains do not apply to
them. Some kinds of data in the external world are inherently
unable to be independently validated by multiple distributed
parties, for example, because the data has restricted access,
or is transient sensor data [42]. Nonetheless, the concept
of consensus, typical to blockchain, can also be applied to
the oracle mechanism in order to locally validate specific
data. It is simply necessary that the mechanism is distributed
i.e. there are several oracles fetching information for a given
update.

Currently, there are several blockchain platforms with oracle
mechanisms, such as Provable, TownCrier, Chainlink, Augur
and Gnosis.

Blockchain Applications in the Space Sector—Despite having
already been proposed for constellations and swarm systems,
the use of blockchain has mainly focused on extending
terrestrial blockchain networks with satellite nodes [20, 21]
and increasing security in sat-com constellations [4, 15-19].
Note that Devi et al [44] proposed the use of blockchain to
manage the interaction between subsystems in a monolithic
spacecraft.

Most research proposes the use of blockchain to secure com-
munication networks between satellites and between satel-
lites and ground stations, as well as, to improve data shar-
ing. Regarding the former application, a security increase
is obtained through the implementation of access control
[15,16] or reputation-based [4, 17] protocols. Regarding the
latter application, i.e. data sharing, network design solutions
involve the use of a delay tolerance network [18] and a multi-
granularity negotiation system to manage communication
resources [8].

Torky et al. [14] presented several blockchain applications

by using space digital tokens for orbits, satellites, space-
craft, orbital debris or asteroids. Here, the applications used
blockchain to facilitate access to space and to space data.

The main disadvantage with blockchain in satellites is the
need of significant amounts of power to execute protocols,
and storage to store the blockchain [4,18,19]. Mital et al. [19]
presented a way to manage capacity limitations of a satellite
with Chain Trimming : as soon as the blockchain exceeds a
specified size, data on the ledger is archived in a text file, sent
to a ground station and a new chain is started.

The research path which has seen the largest industry imple-
mentations [16, 17,20] has been the extension of terrestrial
blockchain networks with satellite nodes in order to improve
throughput in the blockchain [20,21]. In particular, Ling et
al. [20] proposed a consensus protocol in which GEO satellite
constellations are used to generate and multicast random
oracles to different nodes on a terrestrial blockchain network
in order to increase the throughput of the network.

In another implementation, SpaceChain has developed an
operating system deployed on satellites, providing a general
blockchain application platform [16]. The project aims to
bring an open-source decentralised software model to space
(20]

3. SECURED AND REDUNDANT
FRACTIONATED SPACECRAFT SYSTEM

Context

In order to overcome the limitations of nano-satellites in
space applications, a design of a fractionated spacecraft is
proposed. The design facilitates the possibility for many
different (educational or industrial) actors to contribute to a
mission without having full confidence between themselves.
Each actor or group of actors can develop one of the nano-
satellites of the swarm, therefore implementing some of
the subsystems of a monolithic spacecraft. The swarm is
autonomous and managed by all actors. The security of the
system is ensured by a trustless distributed ledger system,
such as blockchain.

The aim of this work is :

e to present a particular type of fractionated spacecraft,
composed of a swarm of nano-satellites, in order to reduce
the cost of the mission per actor and increase the mission’s
performance when compared to equivalent monolithic space-
craft missions, as well as, facilitate scalability of the system
and mission;

e to describe the integration of a blockchain in the swarm
in order to increase the autonomy and the security of the
mission, as well as, the reliability between the different
entities involved.

The potential for scalability, characteristic to a fractionated
system, comes at no extra implementation cost for the system,
as the addition, from a new contributor, of an extra satellite
to the swarm does not imply any modifications to the existing
members. Furthermore, it allows for the maximisation and
maintenance of redundancy through the increase of satellites.
Finally, as previously stated, scalability increases the capacity
of the system in specific applications such as antenna arrays,
or distributed instruments [33].

In Figure 2, simplified representations of the proposed sys-
tem alongside a typical monolithic spacecraft are presented.
Redundancy of both systems is represented through various
generic sensor icons. As can be seen, the proposed system is
not necessarily symmetric, with satellites, as well as subsys-
tems, which do not have the same number of sensors.

%@@»

(a) Monolithic Satellite (b) Fractionated Spacecraft

Figure 2. Generic Representations of systems with
Communication (yellow), Localisation (red) and Image
(orange) Sensors.

Description of the system

In a first analysis of the concept, we assume that the fraction-
ated spacecraft is composed of different subsystems. These
subsystems request or provide some services to other subsys-
tems. We consider that each subsystem is implemented on
several satellites in order to improve the reliability and the
availability of the global spacecraft.

In the context of a fractionated spacecraft where the number
of nano-satellites can vary and where the reliability of each
low-cost satellite is not fully ensured, our main objective is
to defined a distributed system able to manage the global
system.

Our proposal consists in deploying a blockchain on each
satellite where a set of smart contracts manages the exchanges
of services between the subsystems. For that, we propose to
associate a smart contract to each subsystem. The different
implementations of the corresponding subsystem play the
role of oracle for the smart contract which aggregate their
outputs in order to provide a validated output to the other
subsystems. By extension, we will call this type of smart con-
tract Oracle Smart Contract. Note that this can viewed as the
implementation of redundancy, usually used for some critical
embedded systems, including spacecrafts [45] in blockchains.
We also introduce a second type of smart contract to manage
the services between the smart contracts of the subsystems.

More formally, let us consider that the fractionated space-
craft is composed of NS satellites Si,...,Sys. Each
satellite contains some implementations of some of the
ns subsystems si,...,Sps Of the fractionated spacecraft.
The ns; implementations of the subsystem s; are de-
noted by sj o, (1)s Sj,0;(2)5 -+ -1 Sj,0;(ns;)> Where o;(i) €
{1,...,NS} is the index of the satellite containing this
implementation.

We assume that the oracle smart contract SC; is associated
to the subsystem s ;. Since all the exchanges of services are
done on the blockchain, any request r of the service j is per-
formed by calling the smart contract SC;(r) which transmits
the requests to the implementations s; (1) - Sj.o;(ns;)-
Each of them acts as an oracle and provides its output
Sj,o;(u) () to SC;(r) which aggregates them :

SCj(T) = A(Sj,aj(nl)(’r)y ey sj,oj(nsj)(r)) (1)

where A is an aggregation function. According to the type
of values to aggregate, some examples of aggregation are the
choice of the most proposed value or the median value.

The second type of smart contract, called Connector Smart
Contract is defined to manage interactions between the oracle
smart contracts. Indeed, even if they can directly communi-
cate together, some smart contracts need to gather the inputs
of several oracle smart contracts in order to produce their
result or to launch specific actions.

Functional principle

In the defined implementation, each satellite embeds a node
of the blockchain and several subsystems. Additionally, each
sensor is represented by a unique public key which serves
as its identification in the blockchain interaction and can
read and write data on the local blockchain node. Since, by
the definition of blockchains, all nodes are synchronised, all
collected data is accessible by all entities.

For example, when a request r is submitted to a subsystem
Sj:

1. a specific event containing the request r is published
on a block of the blockchain, making it available to each
blockchain node. Note that this step can be skipped if the
request comes from a source external to the blockchain.

2. on each satellite S;, if the corresponding subsystem sensor
is implemented, as an external program, it detects the event,
computes its result s;;(r) and calls a specific function of
the smart contract to send the result to the blockchain (for
example addLocalOutput(s;(r)).

3. after the synchronisation of the blockchain, all the outputs
produced by the various implementations of the blockchain
are available on each satellite.

4. then, the smart contract, implemented on each blockchain
node, and thus on each satellite, runs the various calls to
the function adding the outputs to its data (for example
addLocalOutput(s;;(r)). When it detects that enough
data are available, it launches its aggregation function
A(Sj,0;(n1)(T)s -+ -5 Sj.0;(ns;) (1)) to produce the validated
output of the subsystem SC;(r).

Note that the implementation of a physical local network
between satellites is therefore required but is out of the scope
of this study.

It is interesting to observe that this scheme can be applied to
several types of subsystems :

e a Symmetric Sensor Subsystem, responsible for receiving
and processing data from sensors which receive approxi-
mately equal data.

o an Asymmetric Sensor Subsystem, responsible for receiv-
ing and processing data from sensors which receive differing
data.

o the Communication Subsystem, responsible for receiving
data from and transmitting data to the ground stations.

The Symmetric Sensor Subsystem case is the most simple.
It can be applied, for example, to temperature sensors which
measure roughly the same value.

The asymmetric sensor subsystem is quite different. It
can be seen as a collaborative system between the sensors
implemented on the various satellites. A good example
is the Absolute Position Sensor Subsystem, responsible for
receiving the absolute position of some of the satellites and,

through processing of data from all satellites, including rela-
tive positions, obtain the absolute position of the center of the
system.

The last case is the Communication Subsystem. The antennas
can be considered as sensors of the signal sent by ground
stations. They are supposed to receive quite the same signal
but according to the context, the smart contract can simply
choose the message the most proposed by the antennas, or
it can try to combine the signals received by the different
antennas in order to improve, for example, the reliability.

Finally, the role of the Connector Smart Contracts is to
manage the interactions between the Oracle Smart Contracts.
Their functional principle is classical because they do not
interact with entities external to the blockchain. Indeed, they
are simply called by a Oracle Smart Contract, and according
to the context, they call other Oracle Smart Contracts.

Risk Analysis

The benefits of using a decentralised architecture to increase a
system’s robustness are clear. However, as the complexity of
the system increases, so does the susceptibility to failures and
attacks, which, in turn, requires a more extensive risk analysis
of the system.

As the blockchain is implemented on the satellites, but in-
teracts with users, three main points of failure are detected
: satellite nodes, ground station users and the environment.
Similar risk analysis have been made for drone swarm mis-
sions [46,47]. As in those missions, several high-level types
of risks can be detected for each point of failure. In the
following paragraphs, a list of such risks (similar to the list
proposed by [46]) is presented and some counter-measures
are proposed:

1. Satellite Failure : Satellite malfunctions can be caused by
a collision with another spacecraft, another satellite or debris;
abrasion due to harsh space environment conditions; software
bugs; interference of charged particles with the system; etc.
The two main consequences of this failure are:

« the satellite’s inability to execute the required tasks of its
subsystems. This must be detected by the system and notified
to the ground station entities, which should then proceed to
substitute the satellite. Additionally, as stated previously, the
sheer number of satellites per subsystem must be such that
the loss of a satellite is negligible to the subsystem’s mission;

« the satellite’s unpredictable behaviour towards the re-
quired tasks of its subsystems. This must be detected by the
system and the satellite must be penalised or excluded from
the system. The expulsion should be notified to the ground
station entities.

2. Malicious Satellite : A satellite may be taken over by an
adversary. In addition to the previously mentioned conse-
quences, the satellite may :

o leak information shared by the network of satellites. A
possible solution is the encryption of the system’s data;

« launch DoS attacks by flooding the system with super-
fluous information. In such a case, a threshold of messages
between processing batches can be implemented.

3. Ground Station Failure : A ground station user can expe-
rience failures, such as :

« the inability to connect to the system. Because such a case
does not involve an interaction with the proposed system, its
management is not discussed;

« the ground stations’ unpredictable requests to the system.
The behaviour should be detected by the system and the
requests disregarded.

4. Malicious Ground Station : A ground station may be taken
over by an adversary. The consequences are similar to the
case of a malicious satellite and can be handled in the same
manner.

5. Environment Changes : Space’s harsh environment can
have several impacts on the system. In addition to damages to
the satellite’s sensors, the communication between the system
may be compromised. In such a case, the implementation of a
retry loop, which repeatedly attempts to perform transactions
until a successful output is achieved or until a maximum of
attempts is met, may solve the problem.

4. USE CASE

The objective of this Section is to go deeper in the description
of the system. For that, we will focus on a generic but
practical scenario and then, we will show how to specify and
implement the required functionalities on a blockchain.

Considered Scenario

We consider near-Earth orbital operations and make use of the
blockchain to collaboratively measure data through different
sensors, such as antennas, stellar sensors, GPS and measuring
sensors. Please note that the fractionated spacecraft’s mission
is not limited to this orbit.

The chosen scenario is a sensing mission composed of three
nano-satellites, all equipped with three different types of
sensor (a temperature sensor, a communication sensor i.e an
antenna, and an absolute position sensor). Consequently,
each subsystem have the minimum number of three satellites,
which allows testing of the detection of malicious satellites.

According to the context, a specific ground station can com-
municate with the satellites from the communication subsys-
tem to request specific data. To obtain a better flexibility and
resilience, we consider that all satellites belong to the com-
munication subsystem, meaning that any authorised ground
station can interact with any satellite. However, the ground
stations consider the swarm as a unique entity and never
communicate with only one satellite.

In the scenario, we assume that the ground station requests
the value of a sensor. In a first step, we describe the general
process without taking into account the specificity of the
sensor. However, in later steps, we will analyse the case
where the sensor is a simple temperature sensor (Symmetric
Sensor Subsystem) and the case of absolute position sensor
(Asymmetric Sensor Subsystem).

The proposed mission can recover sensitive space data, which
the cooperating entities may not wish to disclose, therefore
the network is defined as private. Thus, the access of satellites
to the network is defined at the creation of the blockchain to
assure the security of the system.

Additionally, due to limitations on the computing power of
the satellite, PoW and PoS are not adapted for the proposed
scenario, as a more energy efficient consensus protocol was
necessary. In this sense, our choice is to implement a PoA
network based on the Istanbul Byzantine Fault Tolerant 2.0
(IBFT 2.0) protocol.

To simulate the communication between the physical sensor
and the established blockchain network, additional interface
scripts are developed. The interface scripts are able to collect
data from or send data to the associated oracle sensor, as well

Sensor

wlll [1

QOracle SC

Connector SC

-

sQ
E-®
E=®

Connection

]
lT lT)

Oracle SC

Connection
Oracle Sensor < Oracle Contract

Blockchain

Oracle Contract <= Oracle Sensor

Figure 3. Software System Architecture.

as, listen to events emitted by and trigger a function from
the associated Oracle Subsystem Smart Contract. They are
implemented in a scripting language that supports event han-
dling and interaction with a blockchain network (e.g Python).

In a simplified first approach to the system, each sensor is
simulated through an individual text file containing the data
they collected.

Proposed System

The implementation for the chosen scenario is developed,
taking into consideration all the decisions made in the pre-
vious sections.

All the above defined subsystems are implemented using a
general code structure so as to allow the work to be expanded
and applicable in different application cases. To obtain a
suitable structure for all subsystems the following points are
taken into account:

« Independently of the subsystem, the developed code must
allow for the interaction of both sensor systems and ground
stations with the blockchain nodes through oracles. In both
cases, this interaction should result in the processing of a
given set of data and subsequent updates in the blockchain.

« Independently of the subsystem, the developed code must
allow for a node from the fractionated system to interact with
sensors through oracles. This interaction should result in the
processing of a given set of data and subsequent updates in
the blockchain.

To achieve the aforementioned requirements, the structure
presented in figure 3 was developed.

In the diagram, smart contract files are represented by con-
tract icons, interfaces for those contracts are represented as
tabs and ports of the blockchain network (used to commu-
nicate with nodes) are depicted as cylinders. The arrows
indicate the direction of the communication.

The three main components of the proposed implementation
are therefore:

Connection Oracle Sensor <+ Oracle Smart Contract—re-
sponsible for the interface between every sensor and the
corresponding oracle contracts. Considering the direction
from the blockchain to the sensors, these files listen to events
emitted by oracle smart contracts and interact with the sensors
to retrieve necessary data. In the opposite direction, sensors
(such as antennas) can provide information to the files, which
trigger them to call functions from oracle smart contracts.

Oracle Smart Contracts—responsible for the data process-
ing of each subsystem. These files contain the necessary
protocols to identify malfunctioning or malicious nodes and
incoherent data, as well as manage such cases. Considering
the direction from the blockchain to the sensors, these files’
functions are called through their interface by the Connector
Smart Contract to interact with the Connection files and
request data from the sensors (or provide it in the case of
antennas) through the emission of events. In the opposite
direction, these files’ functions are called by the Connection
files, which transmit information through function param-
eters. After the data processing, this information is then
transmitted to the Connector Smart Contract through the call
of functions from this contract’s interface.

Connector Smart Contract—responsible for the interface be-
tween different oracle contracts and, consequently, different
sensor subsystems. It is a contract available to all nodes of
the blockchain and accessible through an interface shared
with the sensor’s contracts. The call of a function from
the Connector contract, by an Oracle contract (for example,
the communication contract), will, subsequently, trigger the
call of an additional function in another Oracle contract (for
example, the symmetric sensor Oracle contract).

In order to better illustrate the flow of data in the system, a
detailed description of the process following a request of data
from a generic sensor (symmetric or asymmetric) by a ground
station is presented in figure 4.

In the flowchart, function names are written in verb font,
dash-dotted lines indicate that an event was emitted by one
function and listened to by another and dashed lines indicate
that multiple functions were called between two function
calls. The numbers attached to each function indicate the
order of execution of the functions. Functions regarding pro-
cessing of data and voting protocols were not included in the
flowchart to decrease cluttering of information. However, as
stated previously, these functions belong to the oracle smart
contracts and are called by the functions askSensorvalue
and setLatestSensorValue.

By analysing the various functions presented, it is possi-
ble to identify similarities between the two oracles con-
tracts. Both contracts have a function called by a script
file, responsible for processing received data and transmit-
ting that data to the caller contract (askSensorValue
and setLatestSensorValue). Similarly, both contracts
have a function which is called by the caller contract and
emits a specific event in order to transmit to or request
data from the script files (receiveSensorValue and

Comm CommOracle

1

start T
receivingCommands 2

‘ ,laskSensorValue
function call

CallerContract

updateSensorValue
4
‘getLatestSensorValue

SensorOracle Sensor

3

1

6
T
e Lo —+ filterEvents
event emission
7
8

setlLatestSensorValue

receiveSensorValue ‘

- |
filterEvents -

I
114

processRequest
16
end

sendMessageToAntenna

-

9
o callback :
= ‘ retrievelatestSensorValue ﬁ::

Figure 4. Flow of Data within the System.

getLatestSensorValue).

As for the script files, they both share functions responsible
for listening to events of smart contracts (filterEvents,
processRequest and processQueue, which was
omitted for simplicity). Furthermore, both files have func-
tions which receive and transmit data to the antenna and the

sensor (receivingCommands, sendMessageToAntenna

and retrievelLatestSensorValue).

Risk Management

A relevant characteristic of the defined architecture is the use
of security blockchain features to protect the system from
attacks.

Firstly, the blockchain is private i.e. every node of the
blockchain is defined at the beginning of the mission and
entry of new participants must be validated by the responsible
entities.

Secondly, functions in the oracle smart contracts are only
accessible to verified and validated users. As defined in this
use case, each sensor of the system is represented by a unique
public key and address. In the proposed implementation,
both these values are stored in the script file of each sen-
sor and are used to validate transactions to the blockchain,
more specifically, to call functions from oracle contracts.
Additionally, a list of approved sensor addresses is stored in
each oracle smart contract. This list contains all approved
sensors which collect data for that subsystem. The addition of
elements to the list can only be done by members of the list.
The removal of elements from the list can only be done by
the elements themselves via an auto-destruction function or
through the violation of an imposed reputation record defined
by all participants.

Finally, the caller contract has no interaction with outside par-
ticipants as it is only accessible through other smart contracts.

Alongside the aforementioned features chosen for the
blockchain, several security protocols are implemented in
order to manage the security risks discussed in section 3. The
main security concerns are handled as follows

Validation of the received Data—In order to validate data
from each subsystem, a minimum number of sensor responses
is necessary. This number is stored in the variable threshold,
defined in the beginning of the mission and can vary from
subsystem to subsystem. After the threshold of responses is
obtained, the set of responses is fed to an algorithm specific
to each subsystem (aggregation function .4), which outputs a
computed value.

In the communication and the symmetric sensor oracle, the
computed result is the mode of the set of data received.

However, in the asymmetric sensor oracle, an additional
computation is required before the aggregation function, i.e.
calculating the mode. In the latter subsystem, the value re-
trieved from each sensor corresponds to the absolute position
of the sensor, meaning it varies from sensor to sensor (hence
the asymmetry of the subsystem). Therefore, it is necessary
to calculate the absolute position of the system’s center for
each sensor before performing the mode. This calculation
is possible, because, as stated in this use case, we assume
that every satellite has access to the relative positions of all
the satellites in the system. The absolute position of the
system’s center a;; obtained through the implementation of
the absolute position subsystem s;, from the satellite .S; is

then given by

NR
Zkzl Pjk,i
)

NR @

aji = Sji+

where s ; is the absolute position obtained by satellite S;,
P, ki is the relative position of satellite S}, to satellite S; and
NR is the number of relative positions the satellite .S; has
access to.

Resistance to Denial-of-Service (DoS) attacks—The flooding
of a subsystem with data is also managed through the variable
threshold as it is not only the minimum but the maximum
number of responses allowed to compute a sensor value.

In addition, the variable pendingSensorRequests is also
used to stop sensors from transmitting repeated data to the
subsystem. The latter variable is a mapping which associates
the identification address of a sensor to a boolean value. If the
boolean is “true”, then the sensor has performed the request
and the request has not yet been processed by the subsystem.
While the boolean is “true”, equivalent requests made from
the same sensor are disregarded.

Resistance to malfunctioning or malicious sensors—In order
to defend a subsystem against malfunctioning or malicious
nodes, a reputation record, common to all validated sensors,
is used.

Each sensor’s reputation is updated when a new sensor value
is computed. In the case of the symmetric and asymmetric
sensor subsystems, in order to update the reputation record,
the maximum variation allowed between the computed value
and the retrieved value from a sensor must be fixed. If the
sensor value is not contained within the maximum variation
interval, a point is added to its reputation. This variation is
stored in the variable maxVariation, defined at the beginning
of the mission and specific to each subsystem.

Finally, the expulsion of under-performing sensors from a
subsystem is ensured by the variable repThreshold, which
is also defined at the beginning of a mission and specific to
each subsystem. This variable corresponds to the maximum
reputation record a sensor can have before being expelled
from the subsystem. If a sensor surpasses this threshold, its
address is removed from the validated sensors list.

Resistance to network shortages—In order to limit the data
loss due to network shortages, the retry loop proposed in the
risk analysis section is implemented in the script files.

If a transaction performed by a sensor oracle fails, the oracle
waits for two seconds and re-executes the transaction. If,
after a maximum number of tries (MAXRETRIES), the
transaction fails, the oracle abandons the transaction and does
not transmit its data to the blockchain.

Implementation choices

The chosen network is the Ethereum network because at the
time of writing, it is the most established network which
supports smart contracts. Additionally, this network’s pop-
ularity can be attributed to its open source environment and
the richness of its documentation [48].

Several proposals were made in order to deploy Ethereum
clients on embedded systems [46] and even on the Inter-
national Space Station [49]. They prove that with some
modifications (out of the scope of this paper) and a correct
choice of the parameters of the blockchain, it is realistic to
plan to integrate light Ethereum clients on a nano-satellite.

Note that Istanbul Byzantine Fault Tolerant 2.0 (IBFT 2.0)
protocol is adapted to the Ethereum network.

We selected Python as our Scripting language. Python
supports event handling and interaction with a blockchain
network, offers comprehensive analytic tools, is reliable and
has an active developers community.

The proposed implementation’s source code is available un-
der an open-source GNU General Public License [50].

5. RESULTS

The final phase of research is the system’s testing in an
ethereum testing network.

Experimental Setup

The testing environment consists of an Ethereum network
with four nodes running in the same machine. The smart
contracts are deployed on the network and a system setup
python file runs on the same host.

The setup file contains the address of the first member of
the system and is responsible for adding all the validated ad-
dresses of each sensor to the respective oracle smart contract
as well as define initial parameters of each of these contracts,
namely, the threshold (= 3), the maxVariation (= 600) and
the repThreshold (= 2).

Several text files are used to simulate the stored data from
each sensor. A commands text file simulates the received
requests from the antennas. The requested sensor values
are also stored in a text file to simulate the response of the
communication subsystem to the ground station.

Evaluation Metrics

In order to analyse the system’s performance, the follow-
ing parameters are obtained for each transaction in the
blockchain:

« the number of the mined block where the transaction is
saved. This parameter allows us to estimate the order of the
transactions in the system;

« the gas used for the transaction. The gas given to miners
after every transaction is strongly related to the processing
power necessary to mine that transaction. As the proposed
use case is composed of nano-satellites, whose processing
power is limited, it is necessary to keep this metric as low
as possible. Additionally, this measurement may be useful in
similar use cases for public blockchains, where the gas price
is not null and varies rapidly.

« the status of the transaction i.e. the boolean value which
indicates if the transaction was successful or not. This
parameter allows us to understand the behaviour of the global
system and possible points of failure.

« the account balance of the sensor which performed that
transaction. Similarly to the gas used, this cumulative param-
eter allows us to test the overall cost of tasks for each sensor
in the system.

Simulation Results

Two phases of simulations were designed and performed to
validate the system’s implementation. In a first phase, each
subsystem was tested individually to verify the specific secu-
rity protocols as well as tasks performed by the subsystems.
In the final phase, the whole system was tested.

Symmetric Sensor Subsystem—In order to test the symmetric
sensor system, three sensor oracles were generated, each with
a personal private key and port, simulating three satellites.
Additionally, a supplementary python file was coded to in-
teract with the caller contract and continuously demand data
from the sensor system. The threshold of responses was set
to three, meaning that all sensors were necessary to compute
a data value. The reputation threshold was set as two.

In a first simulation, all three generated sensors were pro-
vided with identical sensor data. As expected, every request
resulted in the return of a computed value and none of the
satellites were expelled from the subsystem.

In a second simulation, all but one of the sensors were pro-
vided with identical sensor data. As expected, the first three
requests resulted in the return of a computed value. After the
third request, the malfunctioning satellite was expelled from
the subsystem and the subsystem stopped generating sensor
data. Additionally, the generated malfunctioning satellite
shut down after detecting that it had been expelled from the
system.

Regarding the evaluation metrics, every transaction had a
status = 1 i.e. there were no errors with the transactions.
Additionally, all the tasks were run sequentially i.e. the first
sensor to obtain the data was also the first one to call the smart
contracts and have a successful transaction. The average gas
used on the most relevant transactions is presented in table 1.

Table 1. Interval range and Average of gas used in relevant
transactions of the Symmetric Sensor Subsystem.

Function Gas Used (Interval) | Gas Used (Average)
addOracle [51592;66592] 56592
autoDestructOracle [19376;23751] 22080
updateSensorValue - 76421
setLatestSensorValue [93796;160117] 117123

As expected the most expensive function in the oracle is the
setLatestSensor Value function.

Asymmetric Sensor Subsystem—The asymmetric sensor sys-
tem was simulated using the same scenario has the previous
sensor. However, in this case, an additional sensor data file
had to be provided for each satellite. These files contained the
relative positions of every satellite in the system in relation to
the given satellite.

Identical simulations were performed and similar results were
obtained.

Regarding the evaluation metrics, every transaction had a
status = 1 i.e. there were no errors with the transactions.
Additionally, all the tasks were run sequentially i.e. the first
sensor to obtain the data was also the first one to call the smart
contracts and have a successful transaction. The average gas
used on the most relevant transactions is presented in table 2.

10

Table 2. Interval range and Average of gas used in relevant
transactions of the Asymmetric Sensor Subsystem.

Function Gas Used (Interval) | Gas Used (Average)
addOracle [22896;66614] 49328
autoDestructOracle [19387;23773] 22099
updateSensor Value - 76421
setLatestSensorValue [79994,179947] 119357

As expected the most expensive function in the oracle is the
setLatestSensorValue function.

Communication Subsystem—The communication subsystem
was tested with two nodes by receiving commands from
antennas. For this test, two oracles were generated, each with
a personal private key and a port, simulating two satellites.
Additionally, one text file was created with commands read-
ing by satellites, simulating reception of same messages by
each satellite. To simulate the forwarding of answers, the
satellite which sent back the answer was randomly chosen by
the program and wrote its answers in a new text file.

The first test was to send back to the antenna a received
message : ~great job”. Each satellite received this message
and used the blockchain to send it back in its answer file.
As expected, the message was correctly written in the chosen
answer file.

Then, the second test was under the same conditions with
several messages to send back. As expected, all messages
were correctly written in the two answer files.

The average gas used on the most relevant transactions is
presented in table 3.

Table 3. Interval Range and Average gas used in relevant
transactions of the Communication Subsystem.

Function Gas Used (Interval) | Gas Used (Average)
addOracle [78393; 108393] 93393
autoDestructOracle [29162; 27853] 28507.5
sendMessageToAntenna [58904; 73904] 60404

The first execution of sendMessageToAntenna function al-
ways uses more gas than next executions. Then, quantity
of gas is the same for a same sent message and varies in
proportion to the length of the message to send back. In
function of the message length, current average price of the
sendMessageToAntenna function varies.

Fractionated Spacecraft System—As for the complete system,
the scenario detailed in the use case was simulated. There-
fore, nine sensors, three for each subsystem (temperature,
absolute position and communication), were generated. A
different port of the blockchain network was associated to
each satellite simulated. Consequently, for each subsystem,
a different port was associated to every sensor. However,
one sensor from each subsystem shared the same port (corre-
sponding to the satellite they belonged to). A representation
of the scenario is presented in figure 5.

In several simulations, the command text file was randomly
filled with commands to request data from both sensor sub-
systems.

In a first phase of simulations, no malfunctioning or malicious

Satellite associated
to port 8547

Satellite associated
to port 8549

Satellite associated
to port 8548

Figure 5. Concrete Scenario of the System.

nodes were generated. As expected, every request resulted in
the corresponding response text file being filled in with the
labelled sensor values.

In a second phase of simulations, with a malfunctioning node
in each sensor subsystems, the expected results were ob-
tained. The first three requests for each subsystem resulted in
the return of a computed value. After the third request on each
subsystem, the malfunctioning satellites were expelled from
the subsystem and the subsystems stopped generating sensor
data. Additionally, the generated malfunctioning satellites
shut down after detecting that they had been expelled from
the system.

Regarding the evaluation metrics, every transaction had a
status = 1 i.e. there were no errors with the transactions.
Additionally, all the tasks were run sequentially i.e. the first
sensor to obtain the data was also the first one to call the smart
contracts and have a successful transaction. The average gas
used on the most relevant transactions is presented in table 4.

The most expensive function in the network is the setLat-
estSensorValue function for the asymmetric sensor system.
The general trend of the system simulations was an increase
in gas spent in each function. This result is coherent, seeing
as, when testing the complete system, the functions from each
oracle contract trigger additional functions from other oracle
contracts.

The simulation results presented in this section validate the
proposed proof-of-concept. It is possible to confirm that the
developed blockchain is resilient to malicious nodes, node
failure and incorrect sensor data.

6. CONCLUSION

The characteristics of decentralisation, difficult data tamper-
ing and traceability make blockchain technology an excellent
network solution for the management paradigm of multi-

satellite systems. In the present paper, a novel application
for the blockchain network in a collaborative multi-entity
fractionated spacecraft system is presented. The system is
composed of functionally different satellites which perform
tasks pertaining to different subsystems of an equivalent
monolithic spacecraft. Transparency in the system is ensured
by the network, allowing for missions between entirely trust-
less parties. This new framework allows for cooperation be-
tween sensors of different types (with different tasks) through
the use of communicating blockchain oracles and facilitates
scalability of the system. The proposed system is resilient to
malicious nodes, node failure and incorrect sensor data.

Regarding the extension of the proposed architecture, a
possible modification could be the implementation of entry
deposits in ether for new sensors. The current reputation
system could be strengthened by including penalties on the
deposits every time a sensor provides poor data values. This
protocol would consequently encourage sensors to perform
tasks adequately.

A following step of the presented research is the implementa-
tion of the developed network in an embedded board with
similar processing capabilities and memory storage to on-
board computers used in nano-satellites. Successful simu-
lation results will confirm that the defined implementation is
valid and adequate for the proposed application, more specif-
ically, the proposed hardware. In such a case, considering the
results from previous research regarding resilience of swarm
systems, it should also be possible to show that the proposed
system is more resilient to node failure than a monolithic
spacecraft to subsystem failure.

Outside of the presented use case, there are various applica-
tions for the proposed architecture of communicating oracles.
The use of blockchain networks and oracles as already been
proposed for sensor systems in IoT devices, to manage ac-
cess control and data storage [51]. The autonomous multi-
directional architecture of the developed network can simi-
larly be adapted to IoT applications which require not only
data validation, but also communication between devices.
An example application is smart cars’ management, which
require continuous updating of sensor information and trans-
mission of sensor data to external devices, namely, steering
wheels and breaks of cars. In addition to the management of a
single car, the management of a network of autonomous vehi-
cles could also be implemented with the developed network,
as long as communication between vehicles is guaranteed.

In conclusion, the use of blockchain networks in multi-
satellite fractionated systems can bring several advantages

Table 4. Interval Range and Average gas used in relevant transactions of the Fractionated Spacecraft System.

Subsystem Function Gas Used (Interval) | Gas Used (Average)
addOracle [51592,66592] 56592
SymmetricSensorOracle autoDestructOracle [19376;23751] 22293

setLatestSensorValue [93808;149782] 117466

addOracle [51614;66614] 17205

AsymmetricSensorOracle autoDestructOracle [19387;23773] 22311

setLatestSensorValue [98834;167236] 126511

addOracle [78393;108393] 88393

CommunicationOracle autoDestructOracle [29162;30941] 30052

askLatestSensorValue [96387;114024] 107266

11

to collaborative missions in terms of trust, resilience and
security.

(1]

(5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

J. Thangavelautham, M. Herreras-Martinez, A. Warren,
A. Chandra, and E. Asphaug, “The suncube femtosat
platform: A pathway to low-cost interplanetary ex-
ploration,” in 6th Interplanetary CubeSat Workshop,

Oxford, England, 2016.

H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka, and
R. Twiggs, “Cubesat: A new generation of picosatellite

for education and industry low-cost space experimenta-
tion,” 2000.

C. Cappelletti and D. Robson, “Cubesat missions and
applications,” in Cubesat Handbook. Elsevier, 2021,
pp. 53-65.

L. Clark, Y.-C. Tung, M. Clark, and L. Zapanta, “A
blockchain-based reputation system for small satellite
relay networks,” in 2020 IEEE Aerospace Conference.
IEEE, 2020, pp. 1-8.

S. Engelen, E. K. Gill, and C. J. Verhoeven, “Systems
engineering challenges for satellite swarms,” in 2011
Aerospace Conference, 2011, pp. 1-8.

C. K. Pang, A. Kumar, C. H. Goh, and C. V. Le,
“Nano-satellite swarm for sar applications: Design and
robust scheduling,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 51, no. 2, pp. 853-865,
2015.

F. Y. Hadaegh, S.-J. Chung, and H. M. Manohara, “On
development of 100-gram-class spacecraft for swarm
applications,” IEEE Systems Journal, vol. 10, no. 2, pp.
673-684, 2014.

X. Deng, Y. Dong, and S. Xie, “Multi-granularity
mission negotiation for a decentralized remote sensing
satellite cluster,” Remote Sensing, vol. 12, no. 21, p.
3595, 2020.

C. Araguz, M. Closa, E. Bou-Balust, and E. Alar-
con, “A design-oriented characterization framework for
decentralized, distributed, autonomous systems: the
nano-satellite swarm case,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS). 1EEE,
2019, pp. 1-5.

A. Farrag, S. Othman, T. Mahmoud, and A. Y. EL-
Raffiei, “Satellite swarm survey and new conceptual
design for earth observation applications,” The Egyptian
Journal of Remote Sensing and Space Science, 2019.

I. Perez, A. Goodloe, and W. Edmonson, “Fault-tolerant
swarms,” in 2019 IEEE International Conference on
Space Mission Challenges for Information Technology
(SMC-IT), 2019, pp. 47-54.

D. Izzo and L. Pettazzi, “Autonomous and distributed
motion planning for satellite swarm,” Journal of
Guidance, Control, and Dynamics, vol. 30, no. 2, pp.
449-459, 2007.

V. Gazi and K. Passino, “Stability analysis of swarms,”
IEEE Transactions on Automatic Control, vol. 48, no. 4,
pp- 692-697, 2003.

M. Torky, T. Gaber, and A. E. Hassanien, “Blockchain
in space industry: Challenges and solutions,” arXiv
preprint arXiv:2002.12878, 2020.

S. Wei, S. Li, P. Liu, and M. Liu, “Bavp: Blockchain-

12

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

based access verification protocol in leo constella-
tion using ibe keys,” Security and Communication
Networks, vol. 2018, 2018.

S. Cao, S. Dang, Y. Zhang, W. Wang, and N. Cheng,
“A blockchain-based access control and intrusion detec-
tion framework for satellite communication systems,”
Computer Communications, 2021.

S. Cheng, Y. Gao, X. Li, Y. Du, Y. Du, and
S. Hu, “Blockchain application in space information
network security,” in International Conference on Space
Information Network. Springer, 2018, pp. 3-9.

M. Feng and H. Xu, “Msnet-blockchain: A new
framework for securing mobile satellite commu-
nication network,” in 2019 16th Annual IEEE
International Conference on Sensing, Communication,
and Networking (SECON). IEEE, 2019, pp. 1-9.

R. Mital, J. de La Beaujardiere, R. Mital, M. Cole,
and C. Norton, “Blockchain application within a multi-
sensor satellite architecture,” in The Adv. Maui Opt.
Space Surveillance Technol. Conf, 2018.

X. Ling, Z. Gao, Y. Le, L. You, J. Wang, Z. Ding, and
X. Gao, “Satellite-aided consensus protocol for scalable
blockchains,” Sensors, vol. 20, no. 19, p. 5616, 2020.

H. Wei, W. Feng, C. Zhang, Y. Chen, Y. Fang, and
N. Ge, “Creating efficient blockchains for the internet
of things by coordinated satellite-terrestrial networks,”
IEEE Wireless Communications, vol. 27, no. 3, pp.
104-110, 2020.

W. Li, Z. Su, R. Li, K. Zhang, and Y. Wang,
“Blockchain-based data security for artificial intelli-
gence applications in 6g networks,” IEEE Network,
vol. 34, no. 6, pp. 31-37, 2020.

C. J. Verhoeven, M. J. Bentum, G. Monna, J. Rotteveel,
and J. Guo, “On the origin of satellite swarms,” Acta
Astronautica, vol. 68, no. 7-8, pp. 1392-1395, 2011.

R. Sterritt, G. Wilkie, C. Saunders, M. Doran, C. Gama,
G. Hawe, and L. McGuigan, “Inspiration for space
2.0 from autonomous nanotechnology swarms concept
missions towards autonomic robotic craft,” Journal of
the British Interplanetary Society, vol. 73, no. 11, p.
397, 2020.

A. Golkar, “Distributed cubesat mission concepts,” in
Cubesat Handbook. Elsevier, 2021, pp. 123-133.

R. t. Nallapu and J. Thangavelautham, “Attitude control
of spacecraft swarms for visual mapping of planetary
bodies,” in 2019 IEEE Aerospace Conference, 2019, pp.
1-16.

C. Mathieu and A. Weigel, “Assessing the flexibility

provided by fractionated spacecraft,” in Space 2005,
2005, p. 6700.

L. Chi, F. Sun, Z. Liu, and C. Lin, “Overview of frac-
tionated spacecraft technology,” in 2020 International
Conference on Computer Engineering and Application
(ICCEA). IEEE, 2020, pp. 689-692.

C. Mathieu and A. Weigel, “Assessing the fractionated
spacecraft concept,” in Space 2006, 2006, p. 7212.

B. G. J. F. Dufour, C. Cougnet, “Fractionated satellites,”
2010.

“System F6 (Archived),” https://www.darpa.mil/
program/system-f6, accessed in 2021-06-20.

“ANDESITE 6U CubeSat

Auroral Plasma

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Science Mission of Boston University,”’
//directory.eoportal.org/web/eoportal/satellite-
missions/content/-/article/andesite, accessed in 2021-
06-20.

C. Cappelletti and D. Robson, “From mission design to
operations,” in Cubesat Handbook. Elsevier, 2021, pp.
53-65.

T. J. Sabaka, L. Tgffner-Clausen, N. Olsen, and C. C.
Finlay, “A comprehensive model of earth’s magnetic
field determined from 4 years of swarm satellite obser-
vations,” Earth, Planets and Space, vol. 70, no. 1, pp.
1-26, 2018.

A. Budianu, R. Rajan, S. Engelen, A. Meijerink, C. Ver-
hoeven, and M. Bentum, “Olfar: Adaptive topology
for satellite swarms,” in International Astronautical
Congress. Citeseer, 2011, pp. 3-7.

“SULFRO: a Swarm of Nano-/Micro-Satellite at SE
L2 for Space Ultra-Low Frequency Radio Obser-
vatory,” https://digitalcommons.usu.edu/smallsat/2014/
AdvTechl/8/, accessed in 2021-05-09.

P. D’Arrigo and S. Santandrea, “Apies: A mission for
the exploration of the main asteroid belt using a swarm
of microsatellites,” Acta Astronautica, vol. 59, no. 8-11,
pp. 689-699, 2006.

N. El loini and C. Pahl, “A review of distributed ledger
technologies,” in OTM Confederated International
Conferences” On the Move to Meaningful Internet
Systems”. Springer, 2018, pp. 277-288.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 254-269.

S. Falcone, J. Zhang, A. Cameron, and A. Abdel-
Rahman, “Blockchain design for an embedded system,”
Ledger, 2019.

V. Strobel, E. Castell Ferrer, and M. Dorigo, “Man-
aging byzantine robots via blockchain technology in a

swarm robotics collective decision making scenario,’
2018.

S. K. Lo, X. Xu, M. Staples, and L. Yao, “Relia-
bility analysis for blockchain oracles,” Computers &
Electrical Engineering, vol. 83, p. 106582, 2020.

“Blockchain Oracles,” https://blockchainhub.net/
blockchain-oracles/, accessed in 2021-06-20.

M. S. Devi, R. Suguna, and P. Abhinaya, “Inte-
gration of blockchain and iot in satellite monitoring
process,” in 2019 IEEE International Conference on
Electrical, Computer and Communication Technologies
(ICECCT). IEEE, 2019, pp. 1-6.

J. R. Sklaroff, “Redundancy management technique for
space shuttle computers,” IBM Journal of Research and
Development, vol. 20, no. 1, pp. 20-28, 1976.

C. C. Mirio G. Santos De Campos, Caroline P.
C. Chanel and J. Lacan, “A mission-level resilient
blockchain-based robotic system,” IEEE T-RO Special
Issue on Resilience in Networked Robotic Systems,
2020.

S. R. Pokhrel, “Blockchain brings trust to collaborative
drones and leo satellites: An intelligent decentralized
learning in the space,” IEEE Sensors Journal, 2021.

https:

G. Wood et al., “Ethereum: A secure decentralised gen-

13

[49]

(50]

[51]

eralised transaction ledger,” Ethereum project yellow
paper, vol. 151, no. 2014, pp. 1-32, 2014.

“SpaceX to Send First Ethereum Node to ISS: Here’s
How FElon Musk’s Space Agency and SpaceChain
Will Keep ETH Safe,” https://www.techtimes.com/
articles/260911/20210601/spacex-send-first-ethereum-
node-iss-heres-elon-musks-space.htm, accessed in
2021-10-06.

M. Alves, J. Veirier d’Aiguebonne, T. Gateau, and
J. Lacan, “Fractionated-Spacecraft-Blockchain,” 10
2021. [Online]. Available: https://github.com/Mariana-
Andrade- Alves/Fractionated- Spacecraft-Blockchain

H. Al Breiki, L. Al Qassem, K. Salah, M. H. U.
Rehman, and D. Sevtinovic, “Decentralized access con-
trol for iot data using blockchain and trusted oracles,”
in 2019 IEEE International Conference on Industrial
Internet (ICII). 1EEE, 2019, pp. 248-257.

