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Email: {al-cheikh-christian.el-dahdah, coline.van-leeuwen, ziad.kheil}@student.isae-supaero.fr
Email: {jerome.lacan, jonathan.detchart, thibault.gateau}@isae-supaero.fr

Abstract—Blockchain, the technology that gained a lot of pop-
ularity with the price burst of Bitcoin in 2016, could be applied to
increase transparency and cooperability between space agencies.
In this work we underpin the importance of blockchain in satellite
and debris tracking systems like in TruSat, a ConsenSys Space
project. This paper proposes an innovative mechanism using
Smart Contracts to exchange private keys in a public blockchain
of encrypted data characterized fast depreciating value. Finally,
we will demonstrate our mechanism using Solidity, Web3 and
Golden Layout for visual interaction.
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I. CONTEXT

Modern spacecraft, whether destined to stay in Earth’s
orbit or leave its sphere of influence, are exposed to man-
made debris. These debris proved to be of great danger for
space exploration namely with the first confirmed accidental
collision of a French satellite named Cerise with a debris from
an Ariane rocket. The incident was reported by NASA and UK
space track network and justified to the French government
the need to build its own debris tracking system. Nowadays
high profile space agencies rely on their own tracking systems,
and intercommunication about possible collision is scarce and
even primitive. The incident that happened on September 2,
2019 sets a good example: SpaceX did not respond to an
ESA collision risk warning between Starlink 44 and Aeolus
satellites because a glitch in the system prevented that.

With no real solution to remove space junk, humankind is
facing a real problem with more and more satellites being put
in orbit. Since each collision produces more debris, there is a
high risk of cascading collisions resulting in a ring of space
debris around Earth. This scenario is known as Kessler’s syn-
drome [16] named after the NASA scientist Donald J.Kessler.
Paradoxically, our eagerness to thrive and conquer space may
also one day hinder us from travelling outside our atmosphere.
According to a 2020 ESA safety and security report, there are
900 000 objects greater than 1cm-10cm of which the Space
Surveillance Network is only regularly tracking more than 21
000 objects larger than 5-10 cm [9].

II. PROBLEM STATEMENT

There are currently 34000 objects in space bigger than 10cm
and the numbers are only getting bigger as no junk removal is

envisaged in the near future. One collision could increase the
risk dramatically. Let alone the infamous collision between
Iridium 33 and Cosmos 2251 produced around 2000 large
catalogued objects and 8 million fragments smaller than 1cm.
Many studies show that the collision with a 1cm debris in
LEO could be the equivalent of a hand grenade explosion,
and the need for better tracking capabilities can’t be stressed
upon enough [1]. If we were to add objects bigger than 2cm to
the tracking list, as LeoLabs anticipates, this adds a whopping
300 000 objects to the tracking list.

Luckily space object tracking is an ever growing interest
for a lot of private companies like Northstar Earth and Space
[13] [17] and LeoLabs [6] [17], privatisation is imminent.
This growing market can be justified by the fact that in the
upcoming 10 years, companies plan to orbit 12 000 satellites
whereas as of 1957 until now only 9 600 satellites were
successfully put in orbit hence more junk production and more
satellites to maintain than ever before in the near future. In
an effort to mitigate this problem, a solution is proposed to
increase space agencies interoperability and promote the birth
of new actors. In the absence of a real-time international space
debris database, the use of a blockchain could reply to many
problems.

III. POTENTIAL CONTRIBUTION

The term “Blockchain”, is generally mistaken for cryp-
tocurrencies like Bitcoin but this is as wrong as saying that
the internet is google. Known in the literature as “Public
Ledger”, the technology’s purpose is to run a code and publish
information with the consent of all of its participants while
not deleting any of the previous information. These properties
prove to be interesting in the space tracking community [20].
Publishing the position and the velocity in a Two Line Element
(TLE) [15] format (often used in the literature) of a debris in
a Public Ledger would greatly promote transparency between
entities. A debris’ history could be tracked, and pinpointing
responsibilities would be more effective. As a result, TruSat
[3], an open source project being developed by ConsenSys
Space, is one of the most serious solutions addressing the prob-
lem of space debris. The project aims to have an international
public ledger for satellites and debris’ location while being the
most certain about the authenticity of the published data. In
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order to understand the paper’s objective and contribution, it
is important to elucidate TruSat’s engine and objective.

The main idea of the latter is to design a system that lets
anyone submit and contribute to the space tracking problem-
atic, whether it is an individual with a smartphone’s camera
or a big company with sophisticated sensors and telescopes.
The special feature (fig 1) being developed is an engine
that would evaluate the accuracy of one’s information based
on other participants’ observations and distribute reputation
points accordingly. Some key points to retain are that the
system only awards reputation points to the first members that
submitted a satellite’s location, and others would only serve
as witnesses to the accuracy of that information. Discovering
and reporting a new debris would be the best way to increase
one’s trustworthiness. These points would serve to place each
contributor in a special rank that is a direct reflection of their
tracking value and capabilities. Furthermore, the ranks serve to
distinguish between spammers and serious contenders. A rank
4 can validate a rank 0’s data but not vice versa and people
from the same rank cannot validate each other’s information to
avoid scammers. Lastly, the engine has an important function
of suggesting which satellite lacks observation recordings and
rewards generously the first contributor to report a recent
observation of it. This would engage individuals to track
different areas in the sky, thus having a more complete map
of space and increasing cooperability.

While Trusat’s mission seeks to build a trustworthy network
of space tracking enthusiasts, it does not address directly the
creation of incentives that would engage people to participate
in such a project. Since the project would be launched on
the Ethereum mainnet, information is publicly accessible and
free to read, thus making devoted entities unable to sustain
themselves in such a system.

To fill this gap, a solution suggested is to encrypt the data
(fig 1) off-blockchain and then to store it so that interested
entities would have to buy the decryption key to read what
was stored. However, to stay true to TruSat’s objective it is
fundamental to ensure that the encrypted data would be later
revealed publicly so that:

1) The provider would be evaluated for reputation and
eliminate scammers.

2) Co-operability and certainty of space object’s location
would be increased.

3) Most importantly international transparency would be
uplifted for satellites and debris tracking history.

In this perspective, the paper introduces a new protocol that
can be used safely on a public ledger to exchange information.
The smart contract written works best for data which value has
a fast depreciation rate like in the case of the aforementioned
application.

IV. PROTOCOL

Before diving into the protocol that we put in place, some
beforehand cryptography knowledge is necessary.

Fig. 1. Flowchart depicting TruSat and the paper’s proposed solution

A. One Time Pad

The One Time Pad (OTP) [14] (or Vernam cipher) is an
encryption technique famously known for being the only com-
pletely unbreakable cipher. It relies on generating a random,
binary key as long as the message to encrypt, and producing
the Exclusive-Or (XOR, ⊕) of the two.

Fig. 2. XOR truth table

Although the length of the key has to be as long as the mes-
sage, this encryption mechanism is completely unbreakable as
long as the key is generated randomly and never used more
than once.

To cut gas usage, we decided to apply a Stream Cipher
method that closely resembles the OTP. However instead of
working with a key the size of the message, a seed is used
as the input of a pseudo-random generator which then returns
the key needed to compute the XOR. This would not only
drastically reduce the cost of storing a key on the blockchain,
but also do so with a negligible loss in security.
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B. Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol is an asymmetric
key algorithm designed to allow two users to securely share
a secret key over an insecure public channel [19]. This secret
key can then be used to securely exchange over the public
channel, using symmetric key encryption algorithms.

Since its formulation in 1976 by Diffie and Hellman, the
protocol has been widely used for securing online communi-
cations.

The algorithm is based on multiplicative group of integers
modulo n: (Z/nZ). If we take n = p a prime number, in
(Z/pZ all g ∈ [1, p − 1] are primitive roots modulo p. This
property results in the Diffie-Hellman Key Exchange protocol
as follows:

If two users, Alice and Bob, want to safely exchange a
secret key on a public channel with Eve as an eavesdropper:

• They publicly agree on a prime number p and a primitive
root modulo p, g

• Alice chooses any secret integer a, and computes
A = ga mod p, then sends A over the public channel.

• Bob also chooses a secret integer b, computes
B = gb mod p, and sends B.

• Finally:
– Alice can compute the secret S1 = Ba mod p
– Bob can compute the secret S2 = Ab mod p
– Both Alice and Bob now share a common secret

since
S1 = Ba mod p

= gab mod p

= Ab mod p

= S2 = S

If p is chosen as a very large prime (proven to be secure for
lengths of ∼1000 digits and over), and a and b also are very
large integers, Eve can not compute the secret given the public
information.

Alice Bob Eve
p,g p,g p,g
a,A A A
B b,B B

TABLE I
VISIBILITY OF VARIABLES DURING THE DIFFIE-HELLMAN KEY

PROTOCOL

C. The Protocol

These two encryption schemes are used in our protocol to
safely sell depreciative data to peers. Both the provider and the
end user are guaranteed a scam proof transaction, validated by
the smart contract to some extent (developed in section VII).

The protocol (refer to fig. 3, 4 and 5 for clarity) can be
explained in 10 key steps, and example use cases will be
summarised in the next paragraph.

• 1) Provider P wants to sell some information “I” deemed
depreciative.

– Off blockchain, he generates a random key K of
bytes long enough to encrypt “I” using the One Time
Pad encryption (note that he can choose another
encryption system if he wishes, as long as the client
knows this).

– Off blockchain, he encrypts “I” with K, resulting in

I
′
= K ⊕ I

– Also off blockchain, P generates two other keys:
(DHP

pr, DHP
pu) which are the Private and public

keys of a Diffie-Hellman protocol.
– He deploys I

′
to the contract, with:

∗ a certain price,
∗ a description,
∗ a number of days of validity N,
∗ a minimum number of data he commits to provide,
∗ an amount in Ether representing an insurance fund

in the event he scams people (note that he can
decide to put up no insurance funds, but this would
probably be an odd behavior),

∗ his Diffie-Hellman public key DHP
pu,

∗ and an integer representing the price decrease
because by essence the value of the information
is lost over time. The decrease can be one of 3
options : 1 gives a linear decrease, 2 a quadratic
decrease, and 0 or any other integer represents a
constant price.

The contract assigns an identification number “Id”
to this information.

• 2) A Client C decides to buy the information:
– C also generates two Diffie-Hellman keys (off

blockchain): (DHC
pr, DHC

pu) which he stores.
– He calls the contract’s buy function on Id, with the

appropriate price and also provides his public key
DHC

pu. The ether he sends to the contract is stored
in it and can be withdrawn by the client if step 3 is
not accomplished.

• 3) P sees that he has a new client, and needs to send him
the key K.

– He generates (off blockchain) another random binary
sequence K2

– Off blockchain, P then combines his Diffie-Hellman
keys (DHP

pr, DHP
pu) along with C’s public key

DHC
pu following the Diffie-Hellman algorithm, so C

and P now have a shared secret key K3.
– P then sends, through the D-app, K ⊕ K2 ⊕ K3.

Keep in mind that all miners and eavesdroppers can
see this, but no one can decrypt it except for C.

• 4) Now it is C’s turn again :
– He gets K ⊕K2 ⊕K3 by calling the contract.
– Just like P, he proceeds to combine his Diffie-

Hellman keys (DHC
pr, DHC

pu) along with P’s public
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key DHP
pu following the Diffie-Hellman algorithm,

and now has K3 as well.
– He can now simply compute: K ⊕K2 = K ⊕K2⊕

K3 ⊕K3.
– Finally, C hashes the resulting binary K ⊕ K2 and

sends it to the contract. (Note that the contract stores
this hash).

• 5) P reads the hash sent by C, and verifies that it is
the correct hash because he can also compute it with
the information he possesses. If it is wrong he stops the
transaction, if not:

– He can now send K2 , through the contract to the
client C. The contract also stores K2.

• 6) Finally the client now has K2:
– He can compute K = K ⊕K2 ⊕K2.
– Then, I = I

′ ⊕K.
These 6 steps lead to a client having access to the message

I, meanwhile eavesdroppers can not conclude anything. Note
that another client also cannot circumnavigate the logic behind
this, by using the same hash as the first client for example,
because steps 2 to 5 need to be done for each client, thus the
provider generates a different key K2 for each client.

Finally, a few steps are left for the logic to be complete
and to prevent fraud. Before the N days are over, the provider
must:

• 7) Reveal the key K, if he fails to do so he will not
be able to withdraw his earnings and insurance funds,
and clients will be refunded. Afterwards he must wait an
additional 5 days.

During this time window, any client can set a dispute. This
means he deems that the key he was sold, does not correspond
to K.

• 8) Clients who deem a fraud has happened must:
– Call the contract to raise a dispute using the identi-

fication Id of the product.
– The contract stores these funds and awaits for step

8.
• 9) In the event of a dispute raised (fig. 5), the contract

initiates the algorithm to settle the dispute:
– The D-app checks that a reference key K was re-

leased by the provider, if not the client automatically
wins the dispute.

– If the provider has not met the minimum data he
promised, the client is also reimbursed.

– If these two requirements are met, the contract must
check if a fraud has happened on the reference key.
The information the contract had stored was:
∗ the hash of K ⊕ K2 sent by the client and

confirmed by the provider.
∗ The key K2 sent by the provider.
∗ The key K sent by the provider.

– Thus, the contract can compute K ⊕ K2, and hash
the result to confirm it really is what they agreed
upon.

– Finally the contract allows the funds paid by the
client, and the insurance deposit by the provider,
to be retrieved by the party whom was right. This
ensures that the correct person obtains the money.

• 10) Finally after this 5 day window, the provider can
withdraw his funds.

– He can withdraw the ether corresponding to the
number of undisputed clients, clients who lost their
disputes, and remaining funds from the insurance
deposit.

– This operation can only be done once, and after the
time frame has passed. No client can set a dispute
after the provider withdraws his money.

Fig. 3. Flowchart depicting the smart contract’s mechanism part1

This protocol is derived from the desire to monitor frauds
during transactions all the while maintaining the data sold
encrypted on the ledger until it is deemed depreciated. The
initial idea was for a client to simply send his public key,
with which the provider would encrypt the reference key
and send it back. The problem which arose was that no
encryption contracts existed in solidity, thus the verification
after a transaction was impossible. This protocol helped us
bypass this issue because in reality, the client and provider
both agree on the hash beforehand which is the real validation
step. Furthermore computing a XOR and a hash is relatively
simple in solidity.
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Fig. 4. Flowchart depicting the smart contract’s mechanism part2

Fig. 5. Flowchart depicting the smart contract’s raise dispute mechanism

V. IMPLEMENTATION

A. Solidity

Implementing the protocol was not straightforward as sev-
eral factors had to be kept in mind before deploying the smart
contract on Ethereum mainnet:

• The gas price and gas limit.
• The block and transaction validation’s time length had to

be taken into account which is critical for fast depreciative
data.

• The smart contract should be able to store any type of
data for any application with just minor modifications.

1) Gas price and gas limit: One of the main limitations
that greatly impacts the contract’s logic is the gas usage. The
use of for-loops with an unknown number of iterations or
searching in a table should be avoided in functions that do
require gas. Consequently, in the proposed protocol when a
provider P sets the encrypted data’s key K, it is best not to
compare automatically the hashes of K = K⊕K2 with the one

provided by each client to settle disputes because it requires a
loop with a number of iterations that depends on the number of
clients. Raising a dispute would require a special transaction
from each client in order to claim the funds in the case of a
fraud.

Moreover, selling a product requires the initialisation and
storage of a lot of variables: deploy time, product end time,
provider’s address, initial price, depreciation type, insurance
deposit, key K, clients addresses and their respective K2,
hashes and funds. This sets a significant gas price to sell
multiple TLEs or any other product that needs to be updated
often, which is to be impractical. For this matter it was best
seen to group a set of TLEs (or products) into one reference
that use the same encryption key K. This would be convenient
for both the provider and the client. Grouping multiple sets of
data implies exchanging less keys and calling less functions
to buy/withdraw funds or raise a dispute.

In addition, many of the variables are destined to establish
the communication protocol and securely transmit information
between a provider and his clients. Storing these variables on
the blockchain would be pointless because they don’t directly
intervene in the key verification process, which is the essence
of the D-App. Thus, to cut gas costs, Events were often used
in our design. This is the case for all Diffie-Hellman related
keys, the transmission of K ⊕ K2 ⊕ K3 and the reference
description. Since these variables play no role in the final
verification process, the smart contract won’t read them at any
point thus we only emit them as events.

Note that the encrypted message could also have been emit-
ted instead of stored to cut gas costs. However we deliberately
chose to write this on the blockchain, since a reputation system
is mandatory in parallel of the depreciation contract (later in
section VII). Storing the message can and will probably be
vital for such a system.

2) Block validation time and transaction delay: The pro-
cess of creating a new reference of products, uploading
data (TLEs in our case), buying them, and then exchanging
keys can take several minutes or even hours on Ethereum,
depending on the gas price and other factors set by each of
the client and the provider. Therefore the contract cannot be
functional for products that have a really fast depreciative
rate, unless the client buys (or subscribes to) the reference
beforehand, gets the keys and then the provider begins to
upload the promised data. To clear things up, let us consider
the following example: a client C has a satellite of altitude
800km and needs to have a mapping of debris at this orbit.
A provider P sets a reference with a description stating that
it will provide information the upcoming two weeks of debris
in LEO of altitude 600 - 1000km with a minimum number N
of TLEs. Client C subscribes to the reference and begins the
key exchange protocol. After an hour, the client C is capable
of reading the encrypted data that will be regularly uploaded
by the provider P in the upcoming two weeks. In this setting
the client will be able to access critical information in real
time without any delay. At the end of the reference time, if
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the provider did not upload at least the minimum number N
of TLEs promised, the client can raise a dispute and claim his
funds.

Furthermore, getting the absolute time in a smart contract
depends on the block it was mined in. This could raise security
problems and multiple exploitation opportunities. For example
a malicious node could mine a block and alter the time it
mined it such as making a dispute could be in favor of a
client instead of a provider. Knowing that an Ethereum block
is mined on average every 14s-15s, relying on the number
of blocks mined as a time reference could offset the contract
duration by many days for a long term contract which is not
practical. Fortunately block timestamps cannot be tempered a
lot. A block with an abnormal timestamp [10] is rejected by
the network. On the long run the timestamp could be offset by
few minutes which is acceptable for this type of application.

3) Smart contract versatility and organisation: For clarity
and ease of use, the protocol mechanism (excluding the TLE
data type) was distributed over three solidity files:

• “Depreciation Contract.sol” contains all the needed vari-
ables for the protocol inside the structure “DataRefer-
ence”. In addition the contract contains view functions
that are common to both the client and the provider.

• “Client Depreciation Contract.sol” inherits from
“Depreciation Contract.sol”, and implements all the
functions needed on the client side such as buying a
reference, raising a dispute, and setting the hash.

• “Provider Depreciation Contract.sol” inherits from
“Client Depreciation Contract.sol” (consequently from
“Depreciation Contract.sol”) and implements all the
functions related to the provider, such as creating a new
reference, withdrawing funds, setting keys, and viewing
the clients’ addresses.

To make use of the protocol, it is sufficient to only de-
ploy the “Provider Depreciation Contract.sol” once and de-
fine the contract’s interface and address in a fourth contract
that contains the data types to be stored. In our case, the
fourth contract “TLE.sol” helps to store TLEs where the
line 0, or the satellite’s name of type string, is not en-
crypted and lines 1-2 are encrypted and stored in 49 bytes
for optimisation and minimal gas usage. For demonstration
purposes, “TLE.sol” does not implement the interface of
“Provider Depreciation Contract.sol” but inherits it because
it makes deployment faster when developing and testing.
Nevertheless, defining the interface is straightforward and en-
couraged since it will drastically cut gas usage for deployment
(refer to section VI). Hence it is possible to include multiple
contracts, structures and data types inside one reference. In our
case this could be useful to share TLEs along with telescope
images using The InterPlanetary File System (IPFS) [2] or
even sensors raw data.

B. The server

In order to communicate with the blockchain and use smart
contracts, the most straightforward solution is using web3.js

[7]. It is a collection of libraries that allow to interact with a lo-
cal or remote ethereum node using HTTP, IPC or WebSocket.
For instance, the instruction web3.eth.getBlock(blockNumber)
returns the information of the block number blockNumber.

However, sending a transaction is far more complex than
getting the information of one block. Rapidly, the instructions
become too long to be written in a console. In order to ease
the interaction with the blockchain, we decided to create a
server, that would allow the users to see what happens in the
blockchain and to send transactions. Through this server, they
would be able to buy references, view the TLEs and sell new
references.

To develop the server, we used Node.js [18] [24], which is
an open-source JavaScript runtime environment and allows to
execute JavaScript code outside of a browser. We also used
Express [8], a web framework for Node.js, that simplifies
the development of a server. It provides many useful APIs
to structure the client interaction.

Like any other server, our server is composed of a front-end
and a back-end. The front-end is the interface with the users:
it displays the information sent by the server and submits
the requests of the users. On the other hand, the back-end
processes the request and interacts with the blockchain. Figure
6 shows this division between front-end and back-end.

Let us take an example: suppose that Alice wants to send
a new reference. Through the interface on her computer, she
fills a form and writes the description of her reference, the
initial price, the type of depreciation, how long the reference
should last. When she clicks on the submit button, the browser
validates the inputs or displays an error if it is necessary,
and then sends a request to the server. The latter sends
the information to the server-side functions, which form the
transaction. The transaction is then sent to the blockchain,
using web3.js. If everything goes well, web3.js returns a
receipt, with amongst others the number of the block on which
the transaction was registered, and the quantity of gas used.
The server receives the receipt, and sends it to the client-side
function that was waiting for a response. This function then
displays the information to the user, for instance by changing
a paragraph on the screen.

By separating front-end and back-end, we make sure we
can change the interface without having to modify the inter-
action with the blockchain. In the same spirit, cryptography,
transactions and handling the database are done in separate
files. This disjunction also makes sure that our protocol does
not depend on the server, as the goal of using a blockchain
is to decentralize the process. Anyone could use the smart
contracts, through another server.

C. Cryptography

If you wish to use the developped code from Github [5],
be aware that it is not perfectly secure. It was not designed to
safely store keys. Our goal was simply to extensively test our
smart contracts and prove the viability of our protocol. Be sure
to only use it with test accounts. Never use your personal
key before improving the security of the server. Our database
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Fig. 6. Architecture of the server

is composed of .txt files containing the keys and messages,
named after the client’s/provider’s address and the id of the
object being sold. It is enough to test the protocol, but not
secure enough to deploy in a real-life application.

All the cryptographic steps necessary off-blockchain were
done in this server. We used Crypto [22] which is a Node.js
library for the Diffie-Hellman protocol and for generating
random bytes. It is important to note that for the Diffie-
Hellman exchange to function correctly, provider and client
need to be using the same prime number and generators.
Considering that these are not shared through the D-App,
we fixed them in the server (see PrimeAndGenerator.txt). The
prime number was generated once and stored in the database.
We took a prime of length 1024 (we strongly recommend
this being changed to 2048 bits). This length was not picked
randomly: Odlyzko [21] states that using a prime of at least
1024 bits is essential for moderate security, and 2048 bits for
security valid over a decade. Finally, this prime generates keys
which also are 1024 bits long, thus we slice them into 4 buffers
of lengths 32 bytes to emit them through the contract, and
concatenate these when they are received. The data to encrypt
depends on the application. Since we are using an OTP, the key
length will vary. Initially the key was set as a bytes32 variable
in the contract, but in this use case 49 bytes are necessary
to encrypt the TLEs. Therefore we added a pseudo-random
generator and the initial key K became the seed for the real
key. The seed length being of 32 bytes, no particular security
threats arose.

D. Designing the interface

In order to have a user-friendly interface, we used Golden
Layout [12], created by Wolfram Hempel in 2014. This mo-
dule allows to have native popout windows, and a responsive
design. The point of using Golden Layout is that users can
move the windows and stack them as they want. We made
sure they couldn’t open the same window twice.

With Golden Layout, the usual web pages are represented
by components, which are displayed in their own window. It is
these windows that Golden Layout allows to move and stack.
Therefore, we listed the components to create, for example the
list of connected nodes, the list of the most recent blocks or
the list of bought items. After creating an empty layout, each
of these components has to be registered in the layout. At this
point the HTML content of the component is defined as the
equivalent of the content of the web pages. Often, there are
empty < div > paragraphs identified with a unique id so that
the content of this < div > can be changed after executing a
function.

When all the components are registered, it is time to
initialise the layout. We can then choose which components
will appear when the user opens the app: we decided to
show the connection window and the list of blocks. This can
easily be changed. The components that are not shown on the
home page can be opened later on, as long as they have been
registered. Some of them are accessible from the menu on the
left part of the screen, and some of them open when clicking
in a link in an already opened component.

The menu helps to understand how the app is organized,
as it is divided into three parts: the basic functionalities, the
buyer part and the seller part.

1) Basic functionalities:
a) My account: This component allows the users to

connect to their account by entering their private key. They
can then see the balance of their account, and their address is
displayed. The connection allows the users to access specific
parts of the app. For example one cannot buy a product without
connecting beforehand. Theoretically the users can enter any
private key, so they can access anyone’s account. However
as the private key is 256 bits long, the odds of guessing
a randomly generated Ethereum private key is 1/2256. It is
equivalent to finding a specific atom in the universe [11].
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Fig. 7. A screenshot of the interface

b) List of last blocks: This component displays the
numbers of the latest blocks. The number of displayed blocks
is a simple variable in the code and can be changed. By
clicking on the number of a block, the users can see all of
its details: the hash of both the block and the previous one,
the miner, the timestamp... We also included an input field in
the blocks list component, to get the info of any given block.

c) List of nodes: Similarly to the block list, the users can
see the list of nodes connected to the network. This is mainly
for a debugging and pedagogical purpose.

d) Create an account: When opening this component,
the app creates an address and a private key with an empty
balance. The users have the possibility to connect immediately
with this newly created account. This functionality can be
used to access the parts of the app that are blocked for a
non connected user, for instance for demo purposes.

2) Buyer part:
a) See product for sale: The content of this component

is accessible to any user, connected or not. It displays all
the items that are available for sale, using the HTML Details
Element. When one clicks on the id of the product, the widget
opens and a brief description is shown, as well as the price.
Clicking on the “Get more info” link allows to see more info,
such as the provider or the end time of the contract. If the
users are connected, they can buy the product.

b) Ongoing purchases: This component allows to see all
the purchases that are not completed yet. As well as displaying
the main info about the product, the app informs the user if
there is a task to do, such as sending a hash if a provider
answered the buy request. When the provider has sent K2 the
decoder key, the app allows the client to compute the reference

key K to access the data. There is also the possibility to set
a dispute, or ask for a refund.

c) Completed purchases: With this component, the users
can access old purchases that are finished, so that they can see
the TLEs in the reference.

3) Seller part:
a) Sell a new product: Once again, this component is

accessible only to connected users. It consists in a form, to
enter the basic information about the product the user is trying
to sell. If the publication on the blockchain is successful, the
user can see the number of the block on which was published
the offer, the quantity of gas used and the reference ID given
to the product.

b) Manage sales: Similarly to the purchases component,
the manage sales component allows to manage all the products
that the user put on the market. There are several actions to
do:

• Add a new TLE to the reference: fill in a form with the
description of the space debris, and the two lines of the
TLE;

• Send encrypted decoder keys K⊕K2⊕K3 to clients (the
app shows the number of clients waiting for that key);

• Verify received hashes and send K2 to the correct clients;
• Release the reference key K before the end of the

contract;
• Withdraw money.

For testing purposes we coded malicious versions of all
functions which send a hash or a key. They represent ill-
intended users and send random hashes or keys instead of
correct ones.
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VI. BENCHMARKS AND RESULTS

As stated earlier, the server was modeled to test the logic
of the functions and testify the viability of such a system.
Since we could play the roles of different actors of the system
(providers, clients, malicious entities) we were able to test all
possible scenarios. These all proved to be correctly functional
and gas usage was recorded.

The initial deployment of the smart contract costs 3 675
449 gas.

The only functions a client can call are detailed here with
their gas costs. Keep in mind that a client only needs to call
each function once.

• Buy function: varies between 126 000 and 128 000 gas
depending on the parameters given by the provider.

• Send the hash: consistently costs 48 000 gas.
• Raise a dispute: this varies depending on the use case

(simply a refund, or checking for a fraud), 27 600 gas
was used in the worst case (need to compute a XOR and
a hash).

This brings the client to a grand total of 181 600 gas (roughly
$1.02 at the time of writing) (refer to fig. 8). But keep in mind
that most clients probably will not need to raise a dispute.

Fig. 8. Client Gas Usage

Concerning the provider, he must call several functions and
some of which several times depending on what he intends
to sell and to how many clients. Also sometimes the gas
usage depends on the quantity of information he passes as
parameters. Generally:

• Selling a new reference : varies between 204 000 (no
description) and 212 000 gas (100 characters used in the
description).

• Send the encrypted decoder key (K ⊕K2⊕K3): consis-
tently 28 400 gas (this function must be called for each
client).

• Send decoder key K2: 72 000 gas (also done for each
client).

• Release the reference key K: consistently 45 600 gas.
• Adding a new TLE to his reference: this greatly varies

with the length of the Satellite Name (Line 0), from

86 850 gas if no characters are given, to 145 617 gas
for a satellite name of 40 characters (although this is
unthinkable). See fig. 9.

Fig. 9. Gas usage for adding a TLE

This brings the provider to a total of 453 000 gas (roughly
$2.53 at the time of writing). See fig. 10.

Fig. 10. Provider Gas usage

Since a provider probably won’t sell only one TLE, a better
example would be the expected cost for a full transaction of
10 TLEs and 50 clients. This would cost the provider roughly
6 299 600 gas ($ 40.19 today).

VII. FUTURE WORK

From what has been introduced in this paper, the smart
contract is able to resolve disputes over the number of provided
data and the correctness of the sent keys (fig. 5). However there
are no guarantees that the provided data is correct or that the
reference key indeed decrypts the data. For this situation, the
reputation system that TruSat is developing would become
handy, and even vital, to counterfeit this type of fraud. In
future work it could be implicitly added that a provider
could create a reference only if he meets a certain threshold
of reputation. An ideal solution would be to evaluate the
encrypted TLEs with TruSat’s engine upon submission of the
decryption key K at the end of the reference duration, and
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reward the reference’s owner with the respective reputation
points. If the redeemed points were not enough, the clients
could reclaim their funds. The smart contract could finally
guarantee to both the client and the provider all their rights
without the need of a centralized and trusted third party,.

Moreover, elaborating a secure client interface to commu-
nicate with this smart contract must be achieved if we hope to
use it securely: a simple idea could be asking users to write
them down and insert them when needed instead of storing
the generated keys.

Finally, a formal proof over the security of the smart
contract should be extensively studied before deployment.

VIII. CONCLUSION

The use of the developed protocol best fits fast depreciable
information so that revealing the reference decryption key after
a few days will not affect the seller or the buyer. In addition a
reputation system like the one proposed by TruSat is strongly
recommended to evaluate the encrypted data without a third
party and ensure they withhold real value. Nevertheless the
smart contract can be used outside the scope of space debris:
with minor changes it can befit meteorological data. Even yet
one could create a platform to exchange trading signals, which
would be relatively easy and practical.

The main issue however comes from the gas consumption
and price as well as the possible flood of transactions needed
on the blockchain for an application such as TruSat. If 100 000
space objects are reported daily, which is highly achievable, it
would raise the total amount of transactions per day by 10%
validated on the Ethereum mainnet. A similar scenario occured
after the launch of “CryptoKitties”, a D-App to raise virtual
kitties, which caused a huge congestion in the network and a
spike of the gas price [26].

In the future, with the launch of the Proof of Stake con-
sensus mechanism, more transactions could be processed on
the Ethereum mainnet and hopefully the limitation on gas
price and usage won’t hinder deploying TruSat as well as the
Depreciation Contract to ensure a safer space.

One of the biggest advantages of using a Public Ledger
is not only promoting the collaboration between existing
agencies, but also assisting in the creation of small startups in
the space sector. With a simple contract, small scale companies
could join forces and share their information in order to sell
their services or data to other parties. With a constellation of
CubeSats integrated with a passive bistatic radar [23], tracking
could be done at affordable costs. As stated in “Blockchain
application within a multi-sensor satellite architecture” [4], the
distribution of tasks and the automation of observation would
be possible.

Collision assessment businesses such as AGI company do
not only sell services for tracking space objects but also
developing algorithms and tools to process all of the data
collected and predict collisions as well as compute the proba-
bility of such collisions. According to a 2012 international
conference, after applying clustering techniques it costs 2
hours of computing power to analyse collision risks with a

sample of 15 000 objects when using a computer of eight
blades and 128 cores within 32 processors [25].

The immutable specificity of blockchains comes in handy
for researchers as they can use the blockchain’s database to de-
velop their algorithms and hence improve private companies’
collision assessment predictions and efficiency. When adding
300 000 objects to the tracking list, computing requirements
become more hefty and specialised algorithms or services tend
to be more appealing.
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