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Abstract

Working memory is a key executive function for flying an aircraft. This function is particularly
critical when pilots have to recall series of air traffic control instructions. However, working
memory limitations may jeopardize flight safety. Since the functional near-infrared spectros-
copy (fNIRS) method seems promising for assessing working memory load, our objective is
to implement an on-line fNIRS-based inference system that integrates two complementary
estimators. The first estimator is a real-time state estimation MACD-based algorithm dedi-
cated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does
not require a calibration process to perform its estimation. The second estimator is an on-
line SVM-based classifier that is able to discriminate task difficulty (low working memory
load vs. high working memory load). These two estimators were tested with 19 pilots who
were placed in a realistic flight simulator and were asked to recall air traffic control instruc-
tions. We found that the estimated pilot’s mental state matched significantly better than
chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivi-
ty). The second estimator, dedicated to assessing single trial working memory loads, led to
80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators es-
tablish reusable blocks for further fNIRS-based passive brain computer

interface development.

Introduction

Piloting is a complex activity that takes place in a rapidly changing and uncertain environment.
Working memory (WM) is a key executive function for handling the flight, maintaining an up-
to-date situation awareness, adapting the flight plan [1, 2] and interacting with ground control
[3]. This latter activity, following air traffic control (ATC) instructions, is known to particularly
solicit WM as it requires memorization of critical flight information (e.g. heading, altitude,
speed) and the input of these parameters into the flight deck. However, human WM is funda-
mentally limited [4, 5]. Many studies have revealed that several factors such as message length
[6, 7] and complexity [8, 9] affect the pilot’s memory capacity necessary for following ATC in-
structions, as well as their ability to execute commands. One has to consider that the erroneous
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execution of the ATC clearances may considerably jeopardize flight safety [10], thus prompting
the need for enhanced pilot-system interaction.

A promising way to mitigate these human limitations is to consider the implementation of
an adaptive system such as a “passive” brain-computer interface (BCI) [11]. “Passive” BCIs are
not meant to directly control a device (e.g. a mouse) via brain activity but to support “implicit
interaction”. Research on “passive” BCIs provides interesting insight as they aim to infer the
human operator’s cognitive state and then adapt the nature of the interactions to overcome
cognitive bottlenecks [12, 13] such as WM limitations.

Defining a brain imaging technique to estimate WM load level in an operational context
could be considered as the first step required for the development of such an inference system.
Functional near-infrared spectroscopy (fNIRS) is an optical brain imaging method that mea-
sures cortical hemodynamic response. fNIRS provides good spatial localization compared to
EEG, on the order of 1cm? and can be easily integrated with EEG/ERPs [14-16]. Moreover,
NIRS has shown to be correlated with functional magnetic resonance imaging (fMRI) studies
[17]. This device is suited for both laboratory and field experiments in flight simulators [18, 19]
and has been successfully used to detect WM solicitation [20-24]. Despite these numerous ad-
vantages, this technique has been less explored than EEG by the BCI community [11] mainly
because slow hemodynamic response prevents real-time interaction with an apparatus [25].
However, fNIRS has been proven to be a suitable technique for BCI purposes [26-30] although
most of the demonstrations were achieved in an off-line manner (e.g. [31-34]; for a literature
review see [35, 36]). Some on-line BCI have been implemented [25, 37-43] and the processing
of NIRS data in real-time to provide good classification accuracy remains a challenge (e.g. [35,
44)).

Indeed, the on-line extraction of relevant features from the raw fNIRS signal is still a critical
issue [45] and new techniques need to be developed to reduce noise and to improve the usabili-
ty of the data [46, 47]. Several studies [48, 49] have revealed that the Moving Average Conver-
gence Divergence (MACD) filter is a promising processing technique. Relying on the principle
of the Exponential Moving Average (EMA) filter, the MACD filter performs efficient fNIRS
signal detrending and eliminates the low-frequency drifts and high-frequency physiological
and measurement noise from the raw fNIRS signal. It also compares favorably to classical filter-
ing techniques, especially in terms of filter order, and it allows stimulus onset detection without
requiring the use of machine learning techniques [50].

Another issue of deriving cognitive activity from the fNIRS signal is related to the selection
of the most appropriate features used to discriminate different individuals’ states. Many met-
rics have been proposed, such as the change in oxyhemoglobin or deoxyhemoglobin concentra-
tions, the difference/sum/ratio of oxyhemoglobin and deoxyhemoglobin amplitudes, time-to-
peak, and so forth, but there is still a lack of consensus (for a review of metrics see [51]). In any
case, accounting for inter-individual variability is challenging as long as hemodynamics latency
and recording sites may differ across participants [52, 53]. To that end, Tai and Chau [54] have
proposed to adopt a machine learning approach that considers both spatial (i.e. recording
sites) and temporal features (i.e. time windows). In their paper, the authors processed 208 can-
didate features such as the mean, kurtosis, skewness, variance, zero crossings, percentages of
total energy, and root mean squared of the oxygenated and deoxygenated hemoglobin concen-
trations for each site through different time windows. This approach provide excellent accuracy
off-line, as well as a method for decoding single on-line trials [43].

The aim of this study was to design an on-line {NIRS-based inference system dedicated to:

1. estimating the pilot’s state (performing or not performing a WM task);

2. assessing the WM load level.
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To this end, we designed a simplified but plausible pilot-ATC interaction task, using prerecord-
ed messages. The implementation of this inference system was challenging as our participants
were placed in an immersive flight simulator (i.e. user interfaces, panoramic external “view”)
that induces additional cognitive activity (i.e. flight trajectory monitoring), as well as motion
artifacts (i.e. programming autopilot device) therefore adding noise to the fNIRS signal.

To meet these goals, we measured changes in the oxygenation of the prefrontal cortex in-
cluding the dorsolateral prefrontal cortex (DLPFC) which is known to be involved in WM [18,
22]. Real-time pilot’s state estimation was performed using MACD as proposed in economic
market analysis [55] and did not require machine learning techniques. We implemented an
on-line single trial classifier [43, 54] to discriminate low WM load achieved trials versus high
WM load achieved trials.

Methods
1 Participants

Nineteen visual flight rules (VFR) pilots (6 women; mean group age: 27.4 + 6.4; mean flight
hours 145 +45) completed the experiment. Pilots had normal or corrected-to-normal vision,
normal hearing, and no psychiatric disorders. They all had medical clearance to fly. After pro-
viding written informed consent, they were instructed to complete task training. Typical total
duration of a subject’s session (informed consent approval, practice task, and real task) was
about two hours. This work was approved by the Inserm Committee of Ethics Evaluation
(Comité d’Evaluation Ethique de 'Inserm—CEEI/IRB00003888).

2 Equipment

2.1 fNIRS Equipment. During each experiment, we recorded hemodynamics of the pre-
™) equipped
with 16 channels (Fig. 1). On this continuous-wave system, the optode separation was about 25
mm and two wavelengths were used, 730 nm and 850 nm.

Each channel of the device records hemodynamics at a frequency of 2Hz in term of oxygen-

frontal cortex using the functional near-infrared spectrometer fNIR100 (Biopac

ation level variations in comparison to a baseline. Changes in the concentrations of oxygenated
(A[HbO,]) and deoxygenated hemoglobin (A[h#Hb]) can be calculated from changes in detected
light intensity using the modified Beer-Lambert Law [56].

Cognitive Optical Brain Imaging (COBI) Studio®™ software [57, 58] was used to collect data.
The data stream was available on-line from a TCP/IP interface. Before recording, signals for

Light Detector
Light Source (LED)

n - . i 36 mm:
-

)

Fig 1. fNIR100® headband and associated channels numbering. Only the four closest detectors to an
emitter constituted channels. The emitter-detector distance is 25 mm. Channels are represented in red with
their associated number. The original image comes from the fNIRSOFT® manual and has been

slightlty modified.

doi:10.1371/journal.pone.0121279.g001
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Fig 2. Pilot’s interaction with the FCU. The participants controlled the flight simulator from the pilot's seat. The red rectangle corresponds to the FCU used
to set the autopilot with four control knobs, according to ATC clearances (speed, heading, altitude, and vertical speed selection).

doi:10.1371/journal.pone.0121279.9002

each channel was carefully checked for saturation with COBI Studio which provides signal
quality visual representation.

COBI studio was also used to check signal quality and to adjust consequently the headband
on the participant’s forehead. Channels 8 and 10, located above the nasal sinus were systemati-
cally removed because of saturation [59].

2.2 Flight Simulator. We used the ISAE (Institut Supérieur de I’Aéronautique et de
I’Espace—French Aeronautical University in Toulouse, France) flight simulator to conduct the
experiment in an ecological situation. It simulates a twin-engine aircraft flight model and the
user interface is composed of a Primary Flight Display (PFD), a Navigation Display, and an
upper Electronic Central Aircraft Monitoring Display page. The pilot has a Flight Control Unit
(FCU) to interact with the autopilot (Fig. 2).

3 Protocol

3.1 Task Description. Similar to true flying circumstances, pilots heard ATC messages
(pre-recorded for this experiment) and were asked to dial the corresponding flight parameters
in the autoflight system using the four knobs (i.e. speed, heading, altitude, and vertical speed)
of the FCU. The ATC messages were delivered at 78 dB through a Sennheiser™ headset. Two
levels of difficulty were defined based on the flight parameters that the participant had to set
during the experiment:

o Low WM load: only one major digit per trial was used to set each flight parameter (e.g: 15 for
“speed 150, heading 150, altitude 1500, vertical speed +15007).

« High WM load: each flight parameter value was different from the previous one and com-
posed of different digits to increase the complexity (e.g: “speed 164, heading 235, altitude
8700, vertical speed -16007).

The task consisted of 20 repetitions of each difficulty for a total of 40 trials. The task difficul-
ty order was randomly distributed with two constraints:

o the first 20 trials contained 10 trials of high difficulty, and 10 trials of low difficulty (which is
necessary for machine learning purposes, see 3.3);

o the difficulty cannot be the same for more than two successive trials.

PLOS ONE | DOI:10.1371/journal.pone.0121279 March 27,2015 4/19



" ®
@ ’ PLOS ‘ ONE Real-Time State Estimation in a Flight Simulator Using fNIRS

ATC message Response window Rest | SOA

11s 18s 10s 1to 3;
| | I

"“Supaero 32" "OV__eI"

22" cpeed 285, ading 315 408600 | ortical
ngupaer® Spe Hea o pltity Ve 20

Fig 3. ATC span task trial design.
doi:10.1371/journal.pone.0121279.g003

Each ATC message started with the airplane call sign (i.e. “Supaero 32”), immediately fol-
lowed by a sequence of flight parameters and ended with the message “over”. Pilots were in-
structed to set the parameters only after they heard the “over” message (Fig. 3). Thereafter,
pilots had to dial the parameters on the autopilot interface during a 18 s response window. A
practice session was conducted prior to the experiment runs to familiarize them with the exper-
iment protocol and the interface.

3.2 Experimental Components’ Architecture. We implemented a WM load estimator
that integrated different components (Fig. 4):

« asimulated ATC which broadcasts a list of chosen messages to the pilot;

o the ISAE flight simulator which allows a pilot to be in an ecological flight condition (cf. sec-
tion 2.2);

« a NIR100 sensor which measures the prefrontal oxygenation on 16 channels (cf. section
2.1);

» a MACD filter for artifact removal (cf. section 4.1);

« a synchronization module that also formats filtered data for the classification process: filtered
fNIRS output must be synchronized with the pilot’s state, according to the instant of the ar-
rival of that incoming message and according to the pilot’s response window;

« a state estimator (cf. section 4.2) which evaluates pilot’s instantaneous current state in real-
time, which can be not-on-task or on-task. The pilot is considered on-task during ATC mes-
sage reception, and not-on-task in the other periods.

« a classifier (cf. section 4.3) which evaluates in real-time whether the last ATC instruction was
a high WM load trial or a low WM load trial.

Task monitoring, data acquisition and computation were conducted on the same computer
(core i5-3210M, 2.50GHz, 4GB RAM).

3.3 Experimental Time Course. For machine learning purposes (cf. section 4.3), the ex-
periment was split into three successive phases (Fig. 5):

« Phase D—data gathering phase: 20 instructions with two levels of difficulty were successively
presented to the pilot in a random order. During phase D, the correctness of the pilot’s re-
sponse was also checked for further pilot performance analysis. Entered FCU parameters
were available through the ISAE flight simulator software. The fNIRS’s data were processed
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Fig 4. lllustration of the fNIRS based inference system. Pre-recorded ATC messages were sent to the pilot (1). The pilot’s prefrontal activity was
measured with a fNIRS device (2). Output measures (3) were MACD-filtered and synchronized with the temporal design of the trial (4). During the entire
session, the MACD-based state estimator detected whether the pilot's state was not-on-task or on-task (5). When all of the required data were available for
the trial, a request was sent to the pilot’s classifier to assess the WM load of the trial (6).

doi:10.1371/journal.pone.0121279.9004

and recorded for each trial’s response window. The levels of difficulty of the message were
also recorded.

« Phase L—classifier training phase: the classifier training process was activated, based on the
data gathered during phase D. This phase was not perceived by the pilot (cf. section 3.2) and
allowed further classification actions. At the end of this phase, the pilot’s classifier—the pi-
lot’s specific classification model, correctly trained—was available for classification requests.

o Phase T—classifier testing phase: 20 instructions with random levels of difficulty (high WM
load or low WM load) were successively presented. The aim of the classification process was
to discriminate the difficulty of the trial, as soon as possible (cf. section 3.2). After each re-
sponse window of trials, the classifier returned WM load estimation of the trial.

The transition from phase D to phase T was transparent to the participants.

PLOS ONE | DOI:10.1371/journal.pone.0121279 March 27,2015 6/19
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Fig 5. The experiment was split into three successive phases. Data gathering (phase D) and classifier
testing (phase T) consisted of 20 ATC instructions each. The pilot's classifier was trained between these two
phases (phase L). The time scale of the figure is illustrative.

doi:10.1371/journal.pone.0121279.g005

4 Data Analysis

4.1 MACD Filter. Raw {NIRS data were real-time filtered using a MACD filter, commonly
used in economic market analysis [55]. This filter, based on the difference between a short-
term EMA and a long-term EMA, implements a second order band-pass filtering to eliminate
low-frequency (< 0.02Hz) and high-frequency (> 0.33Hz) components from the raw fNIRS
signal [48]. This low order filter has a quasi linear phase in its bandwith and is particularly suit-
ed for real-time applications. For the experiment, we proceeded to an on-line filtering of A
[HbO,] and A[hHDb] on 14 of the 16 channels (Channels 8 and 10 were excluded due to several
artifact acquisition issues), as described in Equation 1, where N represents the number of time
points defining the EMA window:

= EMA,(x) = y, = 2, N-1
X X,
y N y n N 1 n N 1}/ n—1 ( 1 )
C Ninort Niong (x) E Nahort (x) E Niong (x)

We chose a 6 s short-term EMA (N0, = 12) and a 13 s long-term EMA (Nj,,,¢ = 26), ac-
cording to previous work [50] for MACD filtering, to get the desired bandwidth.

4.2 MACD-based State Estimation. We performed MACD analysis to estimate the par-
ticipant’s instantaneous mental state, on-task versus not-on-task, in real-time. In economic
market analysis, Appel [55] states that a sustainable increase in the signal can be predicted
when the MACD line crosses the signal from below. On the contrary, a sustainable decrease in
the signal can be predicted when the MACD line crosses the signal line from above. This meth-
od can help estimate task-onsets and task-offsets based on the fNIRS signal [50]. We computed
in real-time a state estimation chronogram by associating the moments when the MACD line
crossed the signal line from below with stimuli onsets. To do this, we averaged MACD-filtered
NIRS data over the 14 channels. A signal line was computed using a 5 s EMA (N = 10) of this
data, as described in Equation 2:

Signal(x) = EMA,,(MACD(x)) (2)
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Fig 6. Example of real-time state estimation (performed on pilot 16). The upper graph shows MACD-filtered fNIRS signal and the signal line computed
from the latter (dashed line). The two lower graphs show the participant’s state estimated from crossovers between MACD and signal lines and the operator's
actual state, respectively.

doi:10.1371/journal.pone.0121279.g006
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Similarly, we defined task-offsets when the MACD line crossed the signal line from above
(for an example, see Fig. 6). We then compared each time point of the state estimation chrono-
gram to the actual task-onsets chronogram in order to estimate the accuracy of this method.
We labeled the state estimation at time ¢ as:

o Correct Estimation, if the estimated state and the actual task state matched;
« False Positive, if the state was estimated as on-task, and actual state was not-on-task;
o False Negative, if the state was estimated as not-on-task, and actual state was on-task;

4.3 Single Trial SVM-based WM Load Estimation. The classification’s goal was to dis-
criminate on-line whether the last trial was a high WM load trial or a low WM load trial. For
each pilot, we used the first 20 trials to train the pilot’s classifier (phase D and L, see section
3.3). From trial 21 to 40, we used the pilot’s classifier to discriminate trial difficulty, without
any further training. An accuracy score of the pilot’s classifier was provided at the end of the
experimental session.

A[HbO,] and A[hHBb] signals were segmented into trials, in real-time, according to the task
synchronization module (cf. section 3.2). Trial data were filtered and all the features described
below were computed as soon as the {NIRS data were available.

We used a sliding-window on the trial data set to take into account the pilot’s personal he-
modynamic response characteristics [52, 53]. A sliding-window was defined by:

« an offset (first time value of the sliding-window);
« atime interval (length of the sliding-window).

Fourteen prefrontal areas (all channels, except 8 and 10) corresponding to the channels
with sufficient signal reliability were monitored (in terms of HbO, and hHb concentrations, rel-
ative to a baseline) with our fNIRS system (cf. section 2.1).

PLOS ONE | DOI:10.1371/journal.pone.0121279 March 27,2015 8/19
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From the A[HbO,] and A[hHDb] signals, four time-domain features were calculated. For the
sake of simplicity, A{HbO,], and A[hHDb], correspond to relative concentration of HbO, and
hHb respectively during trial ¢, filtered with the MACD filter (cf. section 4.1), averaged during
a specified time period.

We defined A AlHbOy), (TESP. A A, )» the mean amplitude response of the considered sliding-
window of A[HbO,], (resp. A[hHb],), on trial ¢, as the mean value within a specified time win-
dow of the trial, reported to a 2 s average pre-trial onset value, to take into account potential
drift on fNIRS signal.

We used the following as features:

« mean A[HbO,],; and mean A[hHD], on each voxel during the sliding-window of trial t;

oA AlHBO), and 4 Alntw), on each voxel during the sliding-window of trial t;
o A[HbO,], and A[hHb], kurtosis (“peakedness” of the probability distribution) on each voxel
during the sliding-window of trial #;

o A[HbO,],and A[hHb], skewness (asymmetry of the probability distribution) on each voxel
during the sliding-window of trial ;

Sliding-window parameters were chosen according to previous findings concerning ex-
pected hemodynamic response [52, 53] and best classifiers features characteristics defined by
Tail et. al [54]. Therefore, we defined sliding-window length according to three values (5s, 10s,
15s), and to seven different offsets (10s, 11s, 12s, 13s, 14s, 15s, 16s). These variations provided
168 predictors (3x7 sliding-windows, 8 features) for each channel. Then, on each trial, 2352
predictors were provided. Two classes had to be discriminated, high WM load trials and low
WM load trials. As our number of features was large compared to the training sample, we used
a linear Support Vector Machine (SVM) [60]. The principle of the SVM is to find the separat-
ing hyperplane that maximizes the distance between the hyperplane and the closest training
points in each class. To avoid over-fitting, we chose to customize the SVM regularization pa-
rameter for each pilot’s classifier. In a linear SVM, the regularization parameter C controls the
trade-off between errors of the SVM on training data and margin maximization. During the
training process of each participant, the parameter C is incrementally changed over a large
range of values (from 10~ to 10). For each value, a cross validation step was performed and the
parameter with the highest performance was chosen. The classifier was trained using a cross-
validation (5-fold, 10-time) on the first 20 trials with the caret R packages [61]. The classifier
training (phase L) was performed as soon as the data of the first 20 trials were available.

4.4 Behavioral and Offline fNIRS Data. We performed classical off-line behavioral analy-
sis to ensure that we correctly manipulated WM load (i.e. increased error rates in high WM
load condition) and that the participants’ performance was identical across the two blocks (i.e.
identical error rate during the first 20 trials and the last 20 trials). A two-way Analysis of Vari-
ance (ANOVA) was carried out on the correct response rate between subject factors Phase
(Learning vs. Test) and Position (Speed vs. Heading vs. Altitude vs. Vertical speed). An off-line
analysis on the neurophysiological data to verify the consistency of prefrontal activation with
existing neuroimaging literature was performed. To do so, we computed the frontal [HbO,]
and [hHb] peak response (peak value within 30s post-trial onset minus 2s average pre-trial
onset) for each trial and each pilot using the MACD-filtered data. We then performed a three-
way ANOVA using within subject factors Oxygenation (HbO, vs. hHb), WM Load (High vs.
Low) and Voxels (1 vs. 2. .. vs. 16), excluding voxels 8 and 10 due to several acquisition artifact
issues. Tukey’s HSD post-hoc tests were used to evaluate all behavioral and hemodynamic
interaction effects.

PLOS ONE | DOI:10.1371/journal.pone.0121279 March 27,2015 9/19
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High load

Low load High - Low

Fig 7. Activation maps according to the level of difficulty. Units are in umol./™". Both high and low load conditions elicit bilateral DLPFC activities. The
high load minus low load subtraction map (High—Low) shows significantly greater activation of the right DLPFC. Activations shown 14 s post-stimulus onset.
p < 0.001. fNIRSOFT® software (www.biopac.com/fNIR-Software-Professional-Edition) was used to produce this figure.

doi:10.1371/journal.pone.0121279.9007

Results
1 Behavioral and Physiological Results

The participants committed a mean of 13.2 errors (SD = 4.7) during the entire experiment, all
occurring during the high load trials. All the subjects completed the low WM load trials cor-
rectly. There was no significant effect of the phase (learning or testing) on the number of
committed errors.

The ANOVA over the fNIRS data revealed a main effect of the oxygenation (F(1, 18) = 95.2;
p < 0.001; partial 7° = 0.90) with higher [HbO,] than [hHb] and a main effect of the load (F(1,
18) = 7.3; p < 0.05; partial ° = 0.29) corresponding to higher peak response within the high
load condition. In addition, a significant interaction effect between load and oxygenation was
found (F(1, 18) = 28.7; p < 0.001; partial 77” = 0.61) showing that the load effect was only pres-
ent for [HbO,] (p < 0.001). Finally, a second order interaction effect revealed that the load ef-
fect was not homogeneous across voxels (F(13, 221) = 2.87; p < 0.001; partial n* = 0.14). Post-
hoc tests revealed a maximum load effect within the right DLPFC (i.e, voxel 15; see Fig. 7 for il-
lustration) for[HbO,].

2 MACD-based State Estimation Results

2.1 Accuracy. The real-time estimated state was compared to the actual state of the subject
during the experiment (not-on-task or on-task). The results show that the estimation matched
61.74% of the time (SD = 4.27%), which was significantly better than chance (F(1, 18) = 145.52;
p < 0.01) (Fig. 6). We obtained a 58.24% mean specificity (SD = 3.80%), and a 71.88% mean
sensitivity(SD = 9.34%).

2.2 Latencies. The required time for data filtering (maximum per sample < 0.4 ms) is neg-
ligible regarding fNIRS time resolution (2Hz). Hence, pilot’s state estimation (not-on-task or
on-task) is available in real-time.

2.3 Off-line Analysis. The results of estimated onsets and offsets latencies compared to
stimuli onsets and offsets are summarized in Fig. 8. On average, the onset of state estimation
significantly occurred 1.97s before the actual state onset (SE = 0.34s). The estimated offset oc-
curred 2.43s after the stimulus offset (SE = 0.52s).

The difficulty of the current trial had no effect on the onset estimation latency (p = 0.15).
Concerning the offset estimation latency, the offset estimations occurred significantly later for
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high load trials (Mean = 3.62s; SE = 0.66s) than for low WM load ones (Mean = 1.17s;
SE =0.59s) (F(1,18) =12.3; p < 0.01).

3 Single trial SVM-based WM Load Estimation Results

3.1 Accuracy. During the testing phase, a mean of 80.8% (SD = 10.6%) of the trials were
accurately classified (discriminated into on-line low WM load trials and high WM load trials).
We obtained a 72.11% mean specificity (SD = 19.89%), and a 89.47% mean sensitivity
(SD = 15.72%). Individual classifiers’ accuracies are shown in Fig. 9.

3.2 Latencies. After phase D was completed, the classifier training script was run concur-
rently with the 21* trial achievement. This process took a maximum of 42.15s. In the worst
case, it can delay the 21 trial WM load estimation result.

During classifier’s training (phase T), a request to the classifier and its associated response
took a maximum of 770ms. This request can be sent as soon as the trial’s filtered data set is
available. In fact, due to the machine learning design (cf. section 4.3), all the trial data set re-
quired for a request to the pilot’s classifier is constrained by the maximum sliding-window off-
set (16s) and the maximum sliding-window length of 15s (Fig. 10). Therefore, the trial data set
is theoretically available 2s after the pilot’s response window. The required time for data filter-
ing and formatting is negligible regarding NIRS time resolution (2Hz), even for a full trial data
set (maximum < 24 ms of computing time on a complet trial data set). However, the classifier’s
process takes 770ms in the worst case to return an estimated WM load for the trial. The pilot’s
estimated WM load is then available less than 3.3s after his response windows.

Discussion

The objective of this study was to implement on-line tools to infer pilots’ cognitive activity
[62]. We focused on the monitoring of WM as this executive function is highly solicited when
operating aircraft [1, 2]. The design of such an inference system was challenging as, until now,
only three studies involving on-line fNIRS-based state inference systems in an ecological con-
text [39-41] have been conducted. However, these studies did not include realistic simulators
but simplified PC-based simulations. In order to test our inference system, an experimental
protocol was designed, during which the pilots had to interact with ATC instructions of two
levels of difficulty. The behavioral results confirmed that these levels were contrasted, as
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participants performed less well during the higher difficulty level. This result is coherent with
Taylor et al. [9] which has shown that pilots’ WM decline when four different instructions
have to be stored and recalled. The neurophysiological results also confirmed that the task diffi-
culty statistically modulated oxygenation level in the prefrontal cortex (PFC). Moreover, the to-
pographic maps (Fig. 7) revealed particular activations of the right and left dorsolateral PFC
(DLPEC; BA 9 and 46) that are seen as mediating monitoring, i.e., executive control in the Bad-
deley’s model of WM [63]. Indeed, these results, in accordance with previous findings [20-24],
confirmed that fNIRS is a suitable device for monitoring WM load level.
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11s 18s 10s 1to3s >
I I Stream Data !
"Su ro 32" "Over"
upae : | L
16s | 15s i |
Sliding-windows Sliding-windows : i Estimated WM load
max offset : max length : i iof the trial is available
: s ; —t—H : >
0 11 16 29 31 33 38 seconds

Fig 10. Trial timeline and computing latencies. The upper timeline shows ATC span task trial events duration (see Fig. 3). Bottom timeline illustrates
duration constraints to get pilot’s estimated WM load: classifier's response is available in the worst case less than 3.3s after pilot's response window.

doi:10.1371/journal.pone.0121279.9010
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1 MACD-based State Estimation

One novelty of this study was the use of a MACD filter as a systematic state estimator to detect
the pilot’s state (doing or not doing a WM task) [50]. The results were promising as the
MACD-based state estimation matched 62% of time with the real duration of on-task and not-
on-task activity, i.e. receiving (memorizing) or not the ATC instruction (Fig. 6), with a good
true positive rate (72%). The differences observed were explainable by the presence of 42%
false positive rate, when the pilot’s state was estimated as on-task and the stimulus’s state was
not-on-task. Our off-line analysis revealed that, on average, the on-task estimated periods
started before and ended after the stimulation periods (Fig. 8). Furthermore, the delay between
stimulus onset and state estimation offset was significantly higher during the high WM load
trials than during the low WM load ones, suggesting a potential different way of dissociating
workload levels. According to our definitions of the real and the estimated states, it is of a great
importance to consider that the estimated pilot’s WM load could not perfectly fit to the real
state as ATC messages are physical stimuli and pilot’s state is the ATC brain-related activity
that necessarly extends beyond physical stimuli. To this extent, the latencies observed could be
imputable to the anticipation of stimuli onset due to task rhythmicity and the maintenance in
WM of ATC instructions, two functions that have neural substrates in the PFC [64]. Altogeth-
er, these results are consistent with previous studies proving the potential of {NIRS for idle
mode detection [26, 47]. In fact, NIRS offers an insight into the brain’s reaction to stimuli, giv-
ing information on perceived workload that would not be available through behavioral mea-
sures (e.g. stimulation periods). The results also confirmed that MACD is an effective method
for real-time task onsets detection [50], requiring no a priori information on task onsets, few
computational resources, and no calibration. This result is key for ecological tasks, when onsets
timing are unknown. For example, in realistic situations when events happen randomly, the in-
formation concerning task onsets could be retrieved using such a system. This method would
provide a simple and systematic way to trigger classification algorithms for workload level as-
sessment, in addition to a not-on-task/on-task mode detection.

2 Single Trial SVM-based WMLoad Estimation

Along with the state estimation, we used machine learning techniques to discriminate low WM
load versus high WM load trials. The mean classification accuracy reached up to 80.8% success-
ful discrimination between low and high WM load trials with good mean specificity (89.5%)
and sensitivity (72.1%). Moreover, the mean accuracy for 16 out of 19 participants was equal or
superior to 70%, defined as a sufficient rate for BCI [54, 65]. Only one participant’s WM load
level estimation had a lower-than-chance classification. In fact, these results compare well to
the rare on-line studies such as the ones conducted by Naseer et al. [38] (14 participants:
82.14% accuracy), Girouard et al. [39] (9 participants: 83.5% accuracy), and Schudlo et al. [43]
(10 participants: 77.4% accuracy). However one has to consider that two of these studies in-
volved controlled “rest versus task” paradigm [38, 39], a two-class problem that leads to better
classification results than a “low WM load versus high WM load” one. Indeed, these results
demonstrated the efficiency of considering both spatial and temporal features as proposed by
Tai et. al and Schudlo et. al [43, 54], that allowed the monitoring of WM load level in
ecological situations.

Another key issue when assessing the performance of an on-line inference system is related
to the delay of single trial classification. Here, the automatic classification of WM load level oc-
curred in the worst case less than 21.3s after the end of the ATC instruction (ATC instructions
last 11s and estimated WM load of the trial is available less than 32.3s from the beginning of
the trial), a comparable result with other on-line {NIRS-based BCI latency (for a review of on-
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line INIRS-based BCI latency, please refer to Strait et. al [35]). Such a delayed inference was
not an issue in our experimental situation as pilots had 18s to program the autopilot according
to the ATC clearances. As a matter of fact, the diagnosis of the WM performance (high WM
load or low WM load) occurred at maximum 3.3s after the end of the participants’ task

(Fig. 10). Although the loop was not completely closed in our study, this signal could be used
to automatically give a feedback, for example to ATC. Such a feedback could allow ATC to
check that the instruction has been understood, or to repeat the instruction to the pilots when
high WM load conditions are detected, with an acceptable 3.3s maximum latency.

3 Limitation of this Study and Perspective

These results offer promising perspectives towards the design of a fNIRS-based “passive” BCI
for pilots. However, its use in real operational cockpit still remains a challenge as safety is criti-
cal in aeronautics.

First, we used a simplified pilot/ATC task for an easy implementation of our inference sys-
tem. Since ATC was simulated, it prevented mutual pilot—controller verification as in a real
operational situation. Despite this ecological limitation, we believe that our approach was rele-
vant and could address several issues in aviation such as pilots training, pilot selection, or the
monitoring of pilots’ WM ability that is highly sollicited when interacting with ATC [18]. In
the future, pilots will use data-link technology that presents ATC messages as text to limit
pilot-ATC communications. Data-link changes the nature of pilot-ATC interactions and sever-
al studies have shown that it may negatively impact pilots’ WM performance especially when
data-link interferes with other concurrent tasks [6, 8]. Our next challenge is to test our real-
time inference system in a multitasking context (i.e. ATC messages and failures management)
and to dynamicaly adapt the interaction depending on pilots’ spare capacity.

A second issue in the use of a BCI in aviation is related to its reliability. A lack of BCI reli-
ability could trigger spurious assistance and thus impair global pilots’ performance. Indeed, a
mean classification rate of 80.8% and a 3.3s delayed diagnosis of WM load level cannot guaran-
tee that the interaction is adapted in a timely and accurate manner. Therefore, a first step to re-
fine this approach is to integrate complementary measurements such as EEG [66, 67] or
physiological sensors [68] that have been shown to significantly enhance classification perfor-
mance when combined with fNIRS. A second step is to benchmark other machine learning
techniques such as Hidden Markov Models [69] or neuro-fuzzy inference systems [70] that are
well suited for the processing of physiological data [71]. Furthermore, once our classifier was
trained (i.e. phase L), it remained static. Reinforcement learning [72] should be considered for
gathering more samples and for updating our classifier with on-going trials. Such an approach
would allow more robustness with potential optodes position drifting issues across long ses-
sions and would permit to take into account participants’ neurophysiological evolutions across
time (e.g. fatigue, circadian rhythm [73]). Another way of improvement could be to use more
than one classifier method at the same time [74, 75], as shown in practice by Tai et. al [54].
Moreover, this approach would allow for better classification of naturalistic ATC stimuli that
are not at the extremes of a high vs alow WM load continuum. Another perspective is to ex-
plore techniques to speed up response detection on fNIRS signal such as the ones proposed by
Cui et. al [49] that can drastically reduce latency in detecting change in a mental state.

Finally, lingering issues remain regarding the implementation of a BCI in the cockpit. Air-
craft accelerations (i.e. “G-forces”) may impact blood flow or creates headband motion artifacts
[76]. Controlled experiments have to be conducted in real flight with the use of accelerometers
to assess their effects on blood flow before the implementation of such systems in operational
conditions. The usability of the BCI is another key factor in the acceptance of this technology.
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No pilot would accept a lengthy calibration process to train the classifier before each flight de-
parture. From a scientific point of view, this problem addresses inter-session consistency that is
the analysis of the consistency of spatial and temporal features of cerebral oxygenation while
performing a similar task across time. Some authors have investigated promising tracks and
have shown that it is possible to define a trade-off between accuracy and calibration time [77].
The re-use of data collected during previous sessions [78] and the identification of potential
users profile could help in dealing with this critical issue.
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