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ABSTRACT

CubeSat design has been already studied and formalized but knowledge representation remains a challenge. The management

of human-learnt knowledge during the process is not an aspect that is often spoken about. This paper discusses the proposal

of integrating a hierarchical planning approach with a model-based one to the open-source Nanospace framework, a web-

based application for concurrent engineering during the preliminary design phase of CubeSats. Hierarchical planning aids to

introduce commonly tacit human expertise, an aspect that the preliminary design of CubeSats can benefit from. The proposed

integration could allow a faster design convergence and faster inspection of candidate architectures The Nanospace framework

itself may benefit from an approach bringing in model-based efforts and hierarchical planning facilitate knowledge representation

and reuse. A use case on the CREME CubeSat project is detailed, emphasizing how to impregnate the design iterations with

experts’ knowledge.

1 | Introduction

Concurrent design engineering (CDE) applied to space mission
preliminary design [1] is meant to facilitate the design process of
converging into key subsystems, preliminary figures, preliminary
models, and preliminary architectures required to ensure the
space mission feasibility. Usually, such a methodology is sup-
ported by a concurrent design facility (CDF) [2]. Several CDE
implementations have been proposed over the years by:

* Space agencies—e.g., JPL NASA Team X at the Project Design
Center [3], ESA Open Concurrent Design Tool' [4], CNES
IDM-CIC? [5], and DLR Virtual satellite,’

* Academics—e.g., Nanospace [6], Cedesk* [7], C2ERES
DOCKS’ [8], and FOrPlan [9]

* Private companies—e.g., Rheagroup CDP4,° and Valispace’

A comprehensive recent review of CDE tools can be found in [10].

Despite the availability of CDE implementations, practitioners
struggle to find a way to facilitate the interactions and com-
munication between the experts at a system level. This entails
monitoring and if necessary correcting steps, ensuring that the
process is followed in the correct order, that the data is consistent
between subsystems, that up-to-date information is correctly
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shared, and that it is understandable between the different
experts. Today this role is mostly ensured manually by the
system engineer.

All space missions start with a conceptual design study, involving
interdisciplinary teams that work concurrently and co-located.
In this article, concurrent engineering (CE) is approached in a
space context [11], based on “work in parallel” and “co-located
work.” A review of CE design practice in the space sector shows
that 80% of the respondents have a process for the overall design
study and 66% also defined processes for single design sessions
[10]. In contrast with big companies, neither “New Space” [12] nor
academia are prone to have established “communities of practice”
helping throughout the design process. This lack of guidance
through concurrent design studies could lead to wrongful project
and mission planning, delays in the schedule, and a cost increase
[13].

The work presented in this paper considers open-source con-
current design tools to guarantee the accessibility of the further
mentioned tools to everyone, which is particularly important
for educational purposes. The paper specifically discusses the
application of the Nanospace framework, an open-source and
web-based CDE, model-based systems engineering (MBSE), and
hierarchical planning. MBSE can be defined as “the formalized
application of modeling to support system requirements, design,
analysis, verification, and validation activities beginning in the
conceptual design phase and continuing throughout develop-
ment and later life cycle phases” [14]. Hierarchical planning
is an artificial intelligence (AI) planning technique that breaks
with the tradition of classical planning by using hierarchical
decompositions [15]. Specifically, hierarchical planning allows
adding human expertise considerations to the planning process
[16]. The connectivity of Nanospace with the process of system
modeling, assessment, and planning is the main focus of this
study. The implementation of MBSE has its benefits, some
of them having been observed throughout the literature and
presented in [17]:

* Dbetter communication/information sharing,
* increased traceability and capacity for reuse,
* reduce time and cost,

* improved consistency, and

* system understanding and systems design.

The main contribution of this paper is to assess how to incor-
porate an approach based on MBSE and hierarchical planning
into the concurrent preliminary design of CubeSats. Specifically
when using the open-source Nanospace framework. This paper
also briefly explains how the design process and parameters
are involved in the preliminary design of a CubeSat. As an
example, the creation of design structure matrices (DSM), often
used in system architecting, is applied to represent parametric
dependencies and the preliminary design iterations. DSMs can
be clustered and/or sequenced which can bring a lot of insights
for the iterations in the design process [13]. Later the constructed
DSM is used as a base for the proposal of the CubeSat preliminary
design planning approach.

The paper is structured as follows: Section 2 presents an overview
of CubeSat preliminary design, inputs/outputs per discipline,
and presents the CREME project as the use case. Section 3
illustrates the preliminary design decisions and process with
scenario iterations for CREME. Section 4 deepens on how
the design iteration process can be seen from a hierarchical
planning point of view. Section 5 presents a discussion on the
prospects of a model-based/hierarchical planning integration to
the Nanospace environment and the questions that arise from
their potential integration. Section 6 concludes the paper and
presents the motivation for further research in order to attain
a better integration between MBSE and hierarchical planning
on the one hand and CDE tools, specifically in the scope of
Nanospace, on the other hand.

2 | CubeSat Preliminary Design Overview

With the intent to reduce satellite development time and cost,
while at the same time increasing accessibility to space, and
sustaining frequent launches, the CubeSat Project was started in
1999 [18]. A CubeSat [19, 20] is a class of satellites that adopts
a standard size and form factor, a unit is defined as “U.” A1 U
CubeSatisa1l0cm x 10 cm X 10 cm cube with a mass of up to 2 kg.

In general, when designing a space mission, special “budgets”
are identified, e.g., for the satellite mass, the necessary power to
execute its intended use, the communication needs (link budget),
the radiation, etc. When it comes to designing CubeSats, all of
these budgets are crucial for the trade-off assessment between
possible architectures for the CubeSat and its disciplines, such
as structure, thermal, attitude determination and control, etc.
Descriptions of some of these disciplines and simplified list of
input/output parameters are given here (for more information,
please refer to [21]):

* Mission—Consists of orbit definition, surface coverage, visi-
bility windows, eclipse calculation

* Telecommunications/link—Estimation of the margin for
uplink and downlink rates between the spacecraft and ground
stations (or another spacecraft) should be computed. These
margins usually allow to approximate the useful data flow that
can be exploited during the visibility windows of the ground
stations (GS).

* On-board computing—The storage capacity of on-board data
should be sized according to data produced, the extent of
the different telecommunications data streams, and the time
between visibility windows to ground stations. The time the
spacecraft is not in visibility with the ground station, on-
board storage capacity should be sufficient to accommodate
produced data until the next visibility window.

* Energy and power—It involves checking the ability of the
platform to provide enough power for the mission. For
CubeSats, the energy is usually collected with solar panels
and stored with batteries. Batteries provide energy duringe.g.,
eclipses, phases of peak demand, or when solar panels have
not yet been deployed.

* Structure—A 3D structural model is necessary (at least a sim-
plified version). It defines the distribution of the components
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TABLE 1 | Extract of CREME requirements used in this paper.

Requirement ID Requirement text Rationale
M-01 The system shall have an operational mission lifetime of one year. Stakeholder needs
M-02 The system shall permit the measurement of the radiation Stakeholder needs

environment around the earth.

M-03 The system shall have an altitude of at least 600 km. Payload Principal Investigator
M-04 The system shall be in low Earth orbit. Payload Principal Investigator
M-05 The system shall be able to transfer data. Stakeholder needs

of different disciplines throughout the mechanical structure
of the CubeSat.

* Payload—The payload is the main motivation of CubeSat
missions. It is the medium to achieve the scientific goals of
the mission.

* Ground segment—This discipline includes the determina-
tion of the number and location of the ground stations by
guaranteeing the satellite coverage by the selected GS.

Many constraints need to be considered during the design, for
example those that are imposed by the payload, the possible
launch dates and available launchers, the specifics of the concept
of operations, the activities profiles of the mission, and the com-
pliance with space laws and regulations. Generally, spacecrafts
may have different operating modes, that depend on whether the
resources of the spacecraft need to be concentrated into a set of
functions for a determined period of time. The objective of this
paper is to provide a first approximation for design parameter
interactions in order to easier understand the design iterations
inherent to the preliminary design of a CubeSat. Without loss
of complexity, mission modes are not discussed in this paper.
However, the concept presented here can be easily extended to
take mission modes into account as well.

In an academic context, the use of open-source tools for CubeSat
projects [22] has many benefits. Many open-source software,
methodologies, and recommendations can be found online e.g.,
the Libre Space Foundation initiative,® full open-source CubeSat
projects such as the UPSAT initiative,” FloripaSat-I [23], and
educational projects [24]. In addition, the initiative “Open Source
Satellite” provides a list of teams and software of the Open Source
ecosystem,'® a detailed list of tools for CubeSat projects can also
be found in [25].

2.1 | CREME Project Description

The organization for economic co-operation and development
(OECD) Future Global Shocks identified geomagnetic storms
(of solar origin) as one of the five major potential risks for
the coming years [26]. Among other things, events related to
solar activity can have an impact on civil and military earth
satellites for telecommunications, navigation and observation.
Communications (HF/VHF/UHF), electromagnetic interference
(EMI), GNSS navigation, and radar detection could be disrupted.
In order to better understand the space weather around the
earth, the CubeSat radiation environment monitoring experiment

(CREME) project was submitted to the Occitanie region in
France, received its approval, and started late 2020." Its objective
is to measure the radiation environment in low earth orbit (LEO).

CREME’s payload is being developed by ONERA, and it aims
to be composed of a charged particle detector at a moderate
cost. So, the payload must be low cost, have a small footprint,
and its design must allow for easy transportation in any type
of platform (industrial or scientific). The radiation monitor does
not require precise attitude control. The risks are therefore low,
which increases the feasibility of the platform. The platform is
being developed by ISAE-SUPAERO, based on the expertise and
feedback acquired during previous missions, such as EyeSat [27]
(CNES) and EntrySat [28] (ISAE-SUPAERO—ONERA) projects.
Beyond the framework of the CREME project, it is envisaged
that the collected in-flight measurements will be exploited at
the CSUT (Centre Spatial Universitaire de Toulouse). These
measurements should allow for the validation of the sensor
concept in orbit, which has the goal of enriching space weather
monitoring services.

One of the perspectives of such a project is to propose to the
space industry a low-cost radiation monitor, of small size and
mass, and very versatile, so that it can be easily integrated on
commercial satellites. The underlying idea is to be able to have a
sensor that can be adapted to take measurements of the particles
of interest®. In this way, in the future, a satellite constellation
could allow measuring the space environment as a whole, and
enable characterization of orbits until now little described from
the radiation point of view.

2.2 | CREME Preliminary Design Context

Only a subset of the CREME project’s requirements and con-
straints is considered in this paper due to space constraints. They
can be found respectively in Tables 1 and 2. In the following para-
graphs, an in-depth consideration of the parameters, disciplines,
requirements, and constraints is presented.

Telecommunication and power are traditionally the most critical
subsystems to ensure mission survival. Without communication,
mission data would not be able to be retrieved; and without
power, the CubeSat would basically become space debris. The
payload data recollection function would benefit from the highest
possible altitudes of LEO, while it must also visit the South
Atlantic anomaly (SAA) as often as possible (as per constraint C-
02). When active, the payload provides 27.6 Mbits of data per day
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TABLE 2 | Extract of CREME constraints used in this paper.

Constraint ID

Constraint text

Rationale

C-01 The payload data rate shall be considered to be at least 27.6 Mbits per day. Payload Principal Investigator
C-02 The payload shall visit the South Atlantic anomaly as often as possible. M-02
C-03 The energy per bit to noise power spectral density ratio margin shall be M-05
greater than zero.

C-04 The Bit error rate (BER) shall be less than 10~° M-05
C-05 Orbital lifetime after completion of operations of spacecraft in low Earth IADC - 25 year rule [29]

orbit is limited to ensure that their spacecraft and/or launch hardware are

in an orbit that will decay and cause said object to reenter Earth’s

atmosphere within 25 years to mitigate the creation of more orbital debris.
C-06 The depth of discharge (DoD) of the batteries shall remain above 70%. Expert considerations
C-07 The payload is 1.5 U Payload Principal Investigator
C-08 The payload power consumption is on average 6 W. Payload Principal Investigator

(see constraint C-01), and the platform produces around 40 Mbits
of data per day for housekeeping (known by expertise). Therefore,
the data rate value for the initial sizing of the telecommunication
subsystem must be higher than an average of 67.6 Mbits per day.

Power is provided by batteries, which, on CubeSats, are usu-
ally charged by solar panels. During eclipses, batteries must
store enough power to ensure spacecraft survival. Therefore,
the battery’s depth of discharge (DoD) must remain above a
threshold (threshold—under which batteries may deteriorate). If
battery recharge does not totally compensate (on average) power
consumption of the platform and payload, the spacecraft will shut
down and may not wake up (see constraints C-06 in Table 2).

Orbital parameters have a strong impact on mission design.
In this paper, the assumption was made that the orbit will be
circular (eccentricity equals zero). The altitude of the spacecraft
directly impacts telecommunication parameters and reentry time
(Figure 1). The less distance to the ground station, the easier
it is to communicate (shorter range). Regarding reentry time,
in LEO, there are still atmosphere particles that generate some
drag on the spacecraft. This drag lowers the altitude of the orbit
and, eventually, aids the spacecraft in re-entry. Traditionally,
CubeSats take advantage of this drag to ensure the respect of space
regulation (as constraint C-05).

Along with the altitude, other orbit parameters such as inclina-
tion and right ascension of the ascending node (RAAN) impact
the eclipse time of the spacecraft (time spent by the spacecraft in
the shadow, or penumbra, of earth). These parameters also define
which regions on earth are in the field of view of the satellite when
orbiting and at what time, which determines when and for how
long the spacecraft will be able to establish contact with ground
stations. In this example, it is assumed that the platform will be
able to allow a sun-pointing attitude control, ensuring an efficient
battery recharge when the satellite is not in eclipse.

The more batteries and solar panels are needed, the more mass
increases. In satellite design, the mass is a critical parameter
since it is directly proportional to the mission cost. Nonetheless
for CubeSats, volume is usually the most limiting factor (e.g.,

constraint C-07). For the calculation of reentry time, mass,
volume, and drag must be taken into consideration, as well as the
altitude of the spacecraft. The reentry time must remain under
25 years after the mission ends (constraint C-05).

These dependencies are shown in the dependency graph in
Figure 1. Analogously, Figure 2 depicts these dependencies as a
design structure matrix. In the example presented in this paper,
neither attitude determination and control system (ADCS), nor
radiation or thermal considerations are included. These elements
are of course fundamental during a real CubeSat mission prelimi-
nary design, and each of these elements can be easily added since
the approach is modular.

3 | CREME Preliminary Intermediary Design
Results

3.1 | Known Unknowns and Constraint-Lead
Design

Many design parameters are unknown when initializing a pre-
liminary design. A general caveat is that experience can provide
a starting point (at least an order of magnitude for many of the
parameters). In addition, there can be an implicit preference for
available flight-proven technology (which is typically the case,
as otherwise, the risk related to a technology not being ready
to flight needs to be a risk the project is able to manage). In
practice, for critical parameters such as mass, margins are used
depending on confidence (from 5% to 20%). These parameters
can be referred to as known unknowns. In Figure 2 the design
structure matrix for the case study is shown. As models are
considered the single source of truth from an MBSE perspective—
they can be used to capture the system dependencies represented
in Figures 1 and 2, which allows to reuse of knowledge from
previous CubeSat missions. The different system model diagrams
can be considered a sort of template; that can be replenished
to meet new mission expectations without needing to start
from zero, guaranteeing continuity and traceability of success
within missions. For instance, MBSE system development could
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streamline in this manner a more systematic approach to the
assessment of projects following such templates.

When determining what sort of platform answers CREME’s
needs, it is given that at least an on-board computer, a transceiver,
a magnetorquer, and radiators are needed. For this particular use
case, an average platform consumption of 8 W was estimated
(Payload average consumption is set to 6 W, cf. requirement C-
08). The average platform consumption value comes from expert
considerations, and it is a rough estimation for the platform
consumption upper margin. During most of the operational time,
the spacecraft will consume an average of 14 W. But during
telecommunication events, mainly sending data, higher power
consumption may occur, that in the worst case could lead to a
consumption of 10 W by the transceiver, leading to a total of 24 W
needed for this mission.

Some specific risks, e.g., special deployment of solar panels or
antennas, are avoided in projects in general whenever possible,
except when such features have been flight-proven (TRL 9),
or when the purpose of the project is to showcase a certain

An extract of the dependency graph of the case study design parameters.

technology. For example, the EYESAT mission [27] was able to
show that a “flower solar panel” deployment generates almost
four times more power than only covering the CubeSat with
solar panels.

Another factor is the number of “U” cubes, this is an important
criterion for the cost of a CubeSat mission. Usually, a more
compact design is favored for this kind of mission, mainly linked
with the cost of launch per amount of mass. In a simulation
scenario, as a first step, it is verified whether a 2U CubeSat
would be feasible in terms of power consumption (see following
sections). In a real-world setting, a CubeSat preliminary design is
mostly directed by constraints, with not a lot of alternatives (only
one type of COTS component available, opportunistic choice for
launchers, etc.).

3.2 | Preliminary Design Iteration

Requirements (see Table 1) are set in the Nanospace application,
and depending on the known unknowns, design parameters are
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FIGURE 2 | CREME case study design structure matrix.

defined as much as possible. They are automatically updated in
the database through the Nanospace API. The dependency graph
(Figure 1) or the design structure matrix (Figure 2) are able to
show the parametric feedback loops, subsequently allowing to
sequence which part of the script should be re-run. Currently,
the process is semi-automatic, which allows us to avoid getting
stuck in non-converging designs (human expertise is required).
Intermediary results are also stored in Nanospace and can
therefore be easily shared between experts. As mentioned before,
a Python script is used in a semi-automatic process and eases the
link to the Nanospace database.

The first consideration of this example iteration comes from
constraint C-07 (payload is 1.5U) which means that CubeSat
should be at least 2U. Initially, the orbit will be set to 2000 km,
the maximum according to the M-04 requirement. The fact that
the spacecraft shall “fly” over the SAA (Constraint C-02) imposes
a high inclination. Since most of the launchers are for spacecraft
with a sun synchronous orbit (SSO), this kind of orbit is taken
for the first iteration. SSO is commonly used for LEO observation
spacecraft since the surface illumination angle on the earth
underneath remains the same. Space mechanics physics impose
an inclination of 104.85 degrees for an SSO orbit at 2000 km.
SSO is a polar orbit, which at the same time also addresses the
requirement for the transit upon SAA (C-02).

As described, some design choices can be made when reviewing
the mission constraints and requirements. In order to make
these design choices—experience is required and at least some
knowledge of some orbital mechanics concepts. For selecting the
RAAN parameter, basically two options exist:

* dawn/dusk orbit, where the satellites’ solar panels can always
see the sun;

* other cases: the worst case for solar panel illumination is the
noon/midnight orbit, usually taken for simulations.

In CREME, no RAAN constraints exist (as the payload is not
related to local ground surface hour), so the worst-case scenario in
terms of solar panel illumination is considered as noon/midnight
orbit, which would allow a launch on any SSO mission.

The solar panel number and battery are directly related to
the available volume. As a first estimation, in a “flower”
configuration—deployable panels and sun pointing (when the
spacecraft is not in eclipse), such as with the EYESAT platform
[27]—it is considered that a 10 cm? solar “unit” orthogonal
exposed to the sunlight will generate 2 W. For a 2U sat, with a
flower configuration this would mean 4 W per solar panel, with
four arrays it leads to 16 W. The number of accumulators packed
in serial and parallel should be optimized. For the first sizing, we
will arbitrarily consider one battery block with a specification of
the capacity of 80 Wh. Simulation allows for a first check of the
order of magnitude of available power: the Eclipse time is needed
on a representative number of orbits (e.g: 5 days). The results
show that the power input from the solar panels is insufficient
(see Figure 3), meaning a violation of constraint C-06 (as batteries
are not charging enough during daylight periods).

In this case, two possibilities exist: to reconsider the orbital
parameters (SSO dawn/dusk to get no eclipses at all, however this
might come with the downside of fewer launch opportunities),
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FIGURE 4 |

or to reconsider the solar generator number. For the sake of
simplicity of this example, let us suppose here that there is no
solution for power input in a 2U CubeSat and the design decision
that is taken is to consider a bigger spacecraft: a 3U. It is assumed
that 6 W per solar panel will be generated (30 cm?) on four
arrays (four “petals” of the “flower”). During sunlight, therefore
24W are generated, and simulations shows that, in spite of heavy
transceiver data bursts, batteries are able to recharge (as seen in
Figure 4).

Simulation example: battery remaining power (3 days at 2000 km with an SSO midday/midnight orbit—4 solar arrays of 6 W).

Another factor to consider is/are the ground station(s). Initially, it
is considered that only one ground station' is to be used and the
feasibility needs to be checked. The easiest solution is to choose
one band, the link budget margin is good in both directions.
However, the data rate imposes a more advanced transmitter,
such as S-Band, to satisfy the payload data rate (constraint C-01).

Simulation with the Stela tool [30] shows that the orbit with an
altitude of 2000 km is too far for a re-entry below 25 years after
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mission completion (constraint C-05 is not met). The dependency
graph and DSM (Figures 1 and 2) emphasize two main elements
that influence re-entry time: altitude and/or structural parame-
ters. Experts must assess either a change in altitude (and re-iterate
all previous steps) or whether a change in structure is possible
(more challenging).

As it is shown in this subsection, the preliminary design of
CubeSat missions possesses an iterative nature. The dependency
graph and DSM (Figures 1 and 2) provide guidance on selecting
relevant parameters when requirements or constraints are not
met. The choice is a matter of trade-offs between each subsystem
expert, mission cost, failure probability acceptance, and other
factors. Human expertise is required in the process. A single
source of truth is required for the team to efficiently share and
exchange data while performing the preliminary design. There
are too many factors that can influence the final design solution
(as shown), for those factors not to be accurate when reviewed.

3.3 | CREME’s Preliminary Design: A
Semi-Automated Process

For CREME’s preliminary design Python scripts were developed
and used; they can be accessed here®* under the AGPL v3 license.
For pedagogical purposes, simple mission analysis scripts are
provided in this repository. As well as an example of an input
file in .yml format (orbital parameters, power consumption of
the platform, etc.) and an example of outputs, which include
intermediary results such as remaining power graph and data
budget graph and a full report (in Markdown format) required
as a light but realistic preliminary design synthesis

Orbit propagation, eclipse determination, and contact with
ground station events—are handled with a GMAT script. Link
budget analysis is done with Dosa* and Luplink.® Python
scripting is used for miscellaneous computations. The script is
self-sufficient for a first step mission analysis preliminary design.

Traditionally, to ensure mission success, the worst-case scenario
is considered. This allows considering margins, even if refine-
ment of models may be required when the problem ends up being
too constrained.

4 | Hierarchical Planning and MBSE Integration
Efforts

4.1 | Semi-Automated Process for Leading
Preliminary Design First Iteration

As mentioned before the “execution” of the preliminary design
analysis can be treated as a semi-automated process, guided by
the known unknowns as discussed in Section 3.1. Trade-offs are
intrinsic to the preliminary design as showcased in the example in
Section 3.2. Trade-offs in multidisciplinary developments can be
seen as multi-criteria optimization problems. Dependency graphs
(such as the one in Figure 1) can aid multi-criteria optimization
problems, often led by financial and practical considerations. Not
only the mentioned dependency graph, but of course the depen-
dency structure matrix (Figure 2 can be used for this purpose.

The idea of guiding the iterative nature of the preliminary design
through the use of DSMs for instance was explored in [13].

Designing a CubeSat is generally an over-constrained problem
for many reasons. For example, for financial considerations,
orbits are often restricted by commercial launchers’ availability,
size is selected to be as reduced as possible, and off-the-shelf
components often drive considered characteristics. Usually, the
payload owner has an interest in the spacecraft to remain active
for as long as possible. All of these considerations and more lead
to a multi-criteria optimization problem. In practice, it is the
system engineer’s expertise that often avoids the exploration of
theoretically plausible but in reality inconsistent solutions. Even
following the guidelines of the CubeSat standard [31] might lead
to some sort of “lacking freedom” decision design.

Some of the classical considerations in a CubeSat project are the
following:

* the number of U should be as small as possible (smaller will
reduce cost);

* the number of ground stations should be as small as possible;

* the duration of the mission should be maximal.

A possible semi-automated solution for performing trade-offs or
design iterations throughout the design process is to consider
the dependency graph/matrix as a task-planning problem. As an
illustration, and for the sake of clarity, let us consider Figure 1 as
a reference. Different “high level” tasks (not necessarily in this
order) should be achieved in order to achieve the preliminary
design of a CubeSat, such as for example:

* an orbit must be selected;
* anumber of ground stations must be defined;
* the type of antenna must be set;

* the number of panels and batteries must be defined.

The next sections describe why we are talking about hierarchical
planning when discussing the aforementioned preliminary Cube-
Sat design as a semi-automated process that benefits from known
unknowns (knowledge that in general arises thanks to expertise
in the domain).

4.2 | Hierarchical Planning Framework

As explained by Bercher et al. [16], hierarchical planning allows
adding human expertise considerations to the planning process.
Such a hierarchical planning framework seems well adapted for
a representation of a CubeSat preliminary design process that
includes our expert considerations. It is possible to have multiple
abstraction levels to communicate with human users, e.g., for
the automated generation of explanations exploiting abstraction
[32, 33] and also to exploiting control rules to describe desired
solutions [34, 35].

Hierarchical planning is more flexibile in comparison to a
classical planning approach—as it incorporates procedural expert
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knowledge (such as modeling means, or to speed up search)
and allows for the description of more complex behavior (i.e.,
imposing complex restrictions on the desired solutions). It also
incorporates task abstraction to plan explanations. A complete
literature overview on the subject of hierarchical planning can be
found in [16].

4.3 | Hierarchical Task Network Domain,
Problem and Solution Plan

There are many formalization approaches for hierarchical plan-
ning in the literature. Here, we will use classic Hierarchical
Task Network (HTN) planning formalism [36]. HTN planners
are not so much planning to fulfill a set of goals, but much
rather to perform a set of tasks [15]. Concretely, we used HDDL
[37] a hierarchical extension of the Planning Domain Definition
Language (PDDL) associated with HyperTension planner [38].
A planner uses a domain file (tasks decomposition, actions that
exist in the world) and a problem file (instantiation of an initial
world state, and goal to achieve) to build a sequence of tasks called
a plan.

Classically, an HTN domain is decomposed into a set of abstract
tasks, and a set of methods decomposing these abstract tasks into
abstract and elementary tasks [36]. In the scope considered for
this paper, the preliminary design of CubeSats, it is applied in the
following manner:

* Abstract task: High-level task for the choice of design param-
eters

* Methods: decomposition possibilities of the abstract tasks,
i.e., mission will be an Earth observation (EO) mission (and
therefore will probably require an SSO) or is a remote sensing
mission, with no implication of the type of orbit.

* Elementary tasks: for sake of clarity, “naive” actions are used
to get the “value” of the literal directly in the solution plan (ex:
d_is_3 u) to make it directly readable in the solution plan.

Figure 5 showcases the graphical representation of the HDDL
domain extracted from the dependency graph present in Figure 1.
In our example, the definition of the HTN problem consists of:

* setting the intermediary parameters with their initial default
value (i.e.: antenna type is undefined, or by default, VHF
as we know that it will be the less constrained type of
communication);

* setting the constraints values (e.g: size of the payload, required
data rate...);

* setting the root task (“design the mission”).
Therefore, from the design point of view:
* Design parameters are to be set through abstract tasks: e.g.:

(d_nbGroundStation grd_1)

* Intermediary parameters are initially set in the HTN prob-
lem, and solved by the planning process: e.g.: (i_sc_power
p_undefined)

LISTING1 | HTN Problem in HDDL language.
(define (problem leo-eo) (:domain CubeSat)

(:objects

eo_mission - mission

isE0 - missionType

any sso - orbitType

dl d2 d3 - dataRate

grd_1 grd_2 grd_3 - NbGroundStation

p_undefined pO pl p2 - powerLevel

U0 U1 U2 U3 overU3 - volumeU

a - antennaType)

(:htn

:tasks (and (design eo_mission))
rordering ()
:constraints ())

(:init

(altitude alt)

(next_p pl p2) (next_p pO pl) (next_g
grd_1 grd_2) (next_g grd_2 grd_3)

(is1GrdStation grd_1) (is2GrdStation
grd_2) (is3GrdStation grd_3)

(next_s s2 s1) (next_s sl s0)

(next_v U3 overU3) (next_v U2 U3) (next_v
U1l U2) (next_v UO U1)

(isUO UO) (isU1 U1) (isU2 U2) (isU3
U3) (isoverU3 overU3)

(isED0 eo_mission) (isEcho echo_mission)

(isAny any) (isSSO sso) (isEq eq) (isPolar
polar)

(c_missionType eo_mission) (c_payloadDataRate d1)

(c_payloadPowerConsumption pl) (c_payload_
structure U2) (c_LOS 12 alt)))

(d_nbGroundStation grd_1) (d_antennaType
a) (d_nbPanelsBatteries p0)

(i_sc_power p_undefined) (i_power_undefined)))

* Constraints are initially set in the HTN problem, and solved
by the planning process: e.g.: (c_missionType eo_mission)

From the dependency graph (Figure 1) we extract an HTN domain
(Figure 5). We also define the planning problem, the root task
being “design eo_mission,” visible in Listing 1. CubeSat domain
name refers to the HTN domain used, objects design variable (and
associated type) used. For example, sso characterizes a SSO orbit
for the orbitType. A number of ground stations (NbGroundSta-
tion) is explicitly described by literals (there can be 1, 2, or 3
ground stations that can be selected in this example), as well as
datarate, maximum power or volume of the CubeSat allowed by
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“

Graphical representation of the HTN domain extracted from the dependency graph (Figure 1). Nomenclature: abstract tasks begin with
t_” and methods begin with “m_.” Other tasks are elementary, and/or are used to emphasize design parameter values of the HTN problem (Listing 1).

Abstract tasks of the HDDL domain are inferred from design parameters (Figure 1). Note that intermediary parameters and constraints (Figure 1) are
initially set in the HDDL problem (Listing 1). This figure was generated and adapted from a visualization tool provided by HyperTension based on

graphviz.

the design. htn keyword sets the root task to be “solved,” which is
the design eo_mission aforementioned root task. Eventually, init

keyword sets the initial condition for the problem definition.

With the previously defined Domain and Problem, HyperTension
is able to generate a solution plan, here for an earth observation

mission visible in Listing 2.

In this example, a 3U CubeSat

is required: it should need only one

ground station and one battery pack to have a viable design. Only

“elementary actions” appear in the solution plan and provide a
final proposed value. Note that other solutions may exist. The

planner is meant to return the
and domain implementation
gitlab repository.'¢

first valid plan found. The problem
is open source and available on a
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LISTING 2 | Solution Plan.

d_orbit_type_is_sso(eo_mission dl sso)
d_nb_goundstation(grd_1)
d_antenna_type_is_uhf_band(dl a)

0

1

2

3: a_definepower(pl)
4: d_panelsbat(pl)
5

d_is_3_u(u3)

5 | MBSE and Hierarchical Planning-Nanospace
Integration Efforts

The lack of data continuity throughout the complete system life
cycle is one of the biggest lacks of the mentioned CDE tools, and
Nanospace has until here been no exception; as it proposes differ-
ent tools to be used to achieve different calculations for instance.
For example, in the current NanoSpace set-up, GMAT is used for
orbitography calculations, Dosa for link budget computation, etc.
Which software in the preliminary design of CREME were used
for what is explained in more detail in Section 3.3.

Passing the right data from one tool to another, while maintaining
good coherence between the data, generates a complex problem
that needs to be addressed as it creates certain issues, one of
them being the unnecessary overhead when attempting to verify
all different teams are using or not the same data for the design
iterations. Here is where model-based efforts as a single source
of truth in a project can reduce this unnecessary overhead.
Besides the clear advantage of model-based displaying informa-
tion about structural, behavioral, and parametric representations
of CubeSats; a question remains regarding the process of the
development of the CubeSat: How can we manage the knowledge
acquired through the experience of performing the preliminary

design of CubeSats to guide future projects? So far we have
called this aspect in this paper as the sequencing or guiding
of the preliminary design process. A significant shortcoming is
when the lessons learned from previous projects are not exploited
in current or future projects. Here lies the potential benefit of
exploiting hierarchical planning during the preliminary design of
systems, in this paper, we discuss specifically CubeSats.

The open-source Nanospace framework [6] is a dedicated open
source concurrent design engineering tool, mainly consisting of a
GUI, a database, and an API, designed to facilitate the academic
CubeSats preliminary design process. Nanospace allows for direct
information exchange between third-party expert software, while
allowing transparent data visualization to any team member. It
ensures concurrent access to the data. This accessibility detail
is relevant in general but even more when teams are working
remotely. The GUI provides an intuitive way of visualizing other
experts’ contributions that can be of high value when looking for
project understanding and transparency.

Nanospace can benefit from the change propagation information
available from the system models, that can be represented using
design structure matrices (DSMs). DSMs can be automatically
generated for instance from system modeling language (SysML
vl) models by the tool MB2DM" [39]. In other words, the
dependency paths between data in the system model, shown in
this paper with either dependency graphs or matrices can be
used to describe change propagation paths to users. For example,
the user could be signaled through the Nanospace UI when a
requirement is not satisfied (as shown in Figure 6), as well as
if a given information regarding a design parameter must be
updated. This proposition can be taken further with the usage of
hierarchical planning as discussed in this paper. The feature of
hierarchical planning as a tool to aid knowledge management in
the preliminary design of CubeSats is yet to be implemented in
Nanospace, but the authors would like to highlight its potential.
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FIGURE 7 | Synthetic view of a possible MBSE and hierarchical planning integration effort in order to ease preliminary design.

MBSE offers a formalized application of modeling to support
system design, throughout the life cycle phases [40, 41]. Models
are used to represent the system and allow better mastering
the design and verification of complex systems [42]. Several
system modeling languages exist. SysML [43] is implemented in
different software (both open-source and commercial) and its use
is more widespread. Object process methodology (OPM) [44] is
accompanied by the OPCAT software; ARCADIA (Architecture
Analysis and Design Integrated Approach) [45] uses the Capella
software. The ontological modeling language (OML) [46] is
supported natively by OML Rosetta and OML Luxor. OPM and
ARCADIA are more software-dependent in implementation but
have a methodology associated with their tools; while SysML is a
standardization of a notation, but does not restrict its use. OML
can actually be used as a metalanguage to define other modeling
languages, so its application is quite flexible. In terms of the usage
of modeling languages in the domain of CubeSats, one of the
main efforts to apply MBSE began in 2011 [47] using SysML. In
the context of Nanospace a work that delves into the usage of the
SysML model as the single source of truth during the preliminary
design of CubeSats can be found in [48].

As briefly mentioned at the beginning of this section, MBSE can
beneficially be used as a back-bone, in particular as shown in
this paper for the efforts in the very first stages of the design
process. It guides and enables engineers to model requirements,
the environment, the system of interest itself (the CubeSat), etc.

Using a system modeling language, a CubeSat design can be
performed after a stakeholder needs analysis and formalization
of requirements, via functional analysis, a logical architecture,
and then an allocation to a physical architecture, which results
in an end design. Resulting in a coherent representation of the
interactions between all of the concerned design parameters,
requirements, functions, components, and sub-systems.

However, depending on the specific goals of the project when
implementing model-based approaches, it could be that some
data is not captured or “held” throughout the process. During
an actual preliminary design, some solutions are actually not
explored as they are obviously inconsistent from a human expert’s
tacit knowledge point of view. From an optimization point
of view, it may be tempting to carefully choose each orbital
parameter optimally for the mission orbit in order to maximize
payload utility and/or return on investment. However, in practice,
commercial launches are often a real constraint when setting the
final orbit values. Another example of expert knowledge consid-
erations is the fact that there is no use in considering electric
propulsion in a 1U CubeSat; when utilizing only off-the-shelf
components. At the moment, preliminary design efforts have
not actively proposed a solution to manage “experts’ opinions”
besides calling the experts themselves. This paper proposes that
hierarchical planning can manage this tacit expertise as portrayed
in Section 4. Figure 7 synthesizes the information exchange
between Nanospace and the MBSE and HTN features, depicting
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a sort of extended constellation for the Nanospace development.
Planning tools can help generate the first iteration of a design
plan, which can ease the preliminary design process by pruning
inconsistent parameter values or design choices.

When discussing the integration of a model-based/HTN approach
to a CDE environment like Nanospace, as shown in Figure 7,
several research questions become apparent:

* What is the “best” flow of information/data between the
different tools in a design process?—The design logic has an
impact on the tool landscape as well as on the database(s).

* Can MBSE be used as a “front-end” for the complete design
cycle and if so, what would be the ideal output of the tools?—
The use of parametric models provides quite an insight
into the actual design; and could in addition allow to use
optimization set-based design approaches for the next design
steps.

* How do concurrent design approaches and associated tools,
linked with model-based engineering approaches and their
tools, impact the conceptual design phase itself? And in turn,
how can the tools be better developed so as to better support
the particularities of CubeSat design?

These topics are at the heart of the development of the Nanospace
environment. The current structure behind the Nanospace
database needs to be integrated with the hierarchical planning
approach presented in this paper. Furthermore, the aforemen-
tioned research questions need to be addressed by those eager to
further develop concurrent engineering design environments.

6 | Conclusions and Future Work

Even for a “simple” CubeSat, many disciplines are required
during the preliminary design process. This paper shows how
MBSE-driven system models could enhance the propagation of
parameter updates or changes on Nanospace, whether using
parametric design structure matrices or dependency graphs. In
the simplified, but real, use case of the CREME CubeSat project,
a semi-automatic script was used to illustrate the iterative design
process, building on the human engineer’s experience and know-
how. The approach of hierarchical planning accentuated how
to impregnate the design iterations with experts’ knowledge.
MBSE is in the capacity to help fill the existing gap in regards
to archiving and reusing knowledge, as it sets the path for better
communication/information sharing, increased traceability and
capacity for reuse, reduced time and cost, improved consistency,
system understanding, and system design.

Concurrent engineering is facilitated in this work by Nanospace,
a database managing data storage and data sharing between
the experts. It is worth noting, Nanospace cannot realize a
preliminary design autonomously, but needs to work with other
tools (in this paper GMAT, Dosa, Stella, Celestlab, and some
Python scripting), and project team members.

This paper opens several future-work possibilities. An MBSE-
HTN-Nanospace integration to potentially facilitate the auto-
matic application of multi-disciplinary analysis and optimization.

Manually constructing dependency graphs is counter-intuitive so
further integration and development of the MB2DM tool need to
be carried out, while considering the possibilities of incorporating
it into the Nanospace user interface. It also raises the question of
how to bring in the aspects of hierarchical planning more in line
with the required design decisions throughout the preliminary
design of CubeSats. In addition, the current database structure for
Nanospace needs to be re-assessed for it to be able to include more
parameter details, such as their relations. This could include a
data flow for the database to receive and send information to other
software while propagating the changes accordingly. Finally, it
would be good to compare the performance of Nanospace with
and without an MBSE and hierarchical planning vision, both with
expert teams and beginners or students.
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