
HAL Id: hal-02061354
https://hal.science/hal-02061354v1

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JSatOrb: ISAE-Supaero’s open-source software tool for
teaching classical orbital calculations

Julio Hernanz González, Thibault Gateau, Lucien Senaneuch, Theo
Koudlansky, Patrice Labedan

To cite this version:
Julio Hernanz González, Thibault Gateau, Lucien Senaneuch, Theo Koudlansky, Patrice Labedan.
JSatOrb: ISAE-Supaero’s open-source software tool for teaching classical orbital calculations. 7th
International Conference on Astrodynamics Tools and Techniques (ICATT 2018), Nov 2018, Oberp-
faffenhofen, Germany. �hal-02061354�

https://hal.science/hal-02061354v1
https://hal.archives-ouvertes.fr

�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/22843

https://indico.esa.int/event/224/papers/4080/files/211-paper.pdf

Hernanz González, Julio and Gateau, Thibault and Senaneuch, Lucien and Koudlansky, Theo and Labedan, Patrice

JSatOrb: ISAE-Supaero’s open-source software tool for teaching classical orbital calculations. (2018) In: 7th

International Conference on Astrodynamics Tools and Techniques (ICATT 2018), 6 November 2018 - 9 November

2018 (Oberpfaffenhofen, Germany).

JSatOrb: ISAE-Supaero’s open-source software tool
for teaching classical orbital calculations

Julio HERNANZ GONZALEZ∗, Thibault GATEAU∗,
Lucien SENANEUCH ∗, Theo KOUDLANSKY ∗, and Patrice LABEDAN∗

∗ ISAE-SUPAERO, Université de Toulouse, FRANCE
Email: firstname.lastname@isae-supaero.fr

Abstract—JSatOrb is an ISAE-Supaero’s software tool
dedicated to orbital calculation and designed for pedagogical
purposes, with professional level features outputs. It has been
initiated to find a soft which would fill the gap between
local teachers developed tools and professional tools, exploiting
state of the arts algorithms concerning space mechanics
calculus. Even if current provided open source libraries
are not fully compliant with our pedagogical requirements
(simplicity, flexibility, multi-plateform and ergonomics), they
provide complete and accurate calculus methods that are
dedicated to a professional use. However, GUI part is not the
main concern when used by space engineers which only require
API access.

Concretely, JSatorb project is open-source (MIT license)
and under development. It is inspired from current full-stack
implementation methods. Ergonomic and intuitivity are at stack
concerning the front-end, which is mainly based on Angular
(https://angular.io/) and Cesium (cesiumjs.org). Efficiency and
correctness on calculus are provided by the back-end part, which
relies on Orekit (https://www.orekit.org/). Developed in Java,
Orekit is a space dynamics open source library. It depends
only on the Java Standard Edition version 8 and Hipparchus
(https://hipparchus.org/) version 1.0 libraries at runtime. It is
widely used by ESA and CNES.

CONTENTS

I Introduction 1

II JSatorb Specification: as Good as our Current
Teaching Tool, SatOrb 1

II-A Main display 2
II-B Creation boxes 2
II-C Analysis 3

III Existing Solutions 3
III-A State of the Art - SatOrb Equivalent

Softwares 3
III-B State of the Art - Astrodynamic Libraries 3
III-C Synthesis 4
III-D First Prototyping Attempts 4

IV Webservice Architecture using a REST
implementation 4

IV-A Architectural view 4
IV-B Front-end 4
IV-C Back-end 6

V Conclusions and further development 6

References 8

I. INTRODUCTION

Historically ISAE-SUPAERO developped a software tool
dedicated to orbital calculation and designed for pedagogical
purposes: Satorb. It has been widely used for more
than fifteen years in teaching master level students. It
was closed software, based on VB.NET (https://code.msdn.
microsoft.com/Official-Visual-Studio-f48134ec). SatOrb was
designed to easily set satellites in motion and analyse
its effects, manoeuvres, ephemeris... JSatOrb can be seen
as an evolution of Satorb, open-source and modernised.It
designed to be ergonomic, easily understantable, intuitive as a
student-focused learning tool. But it should be comparable to
professional software for researchers and engineers.

It is inspired from current full-stack implementation
methods. Ergonomic and intuitivity are at stack concerning the
front-end, which is mainly based on Angular (https://angular.
io/) and Cesium (cesiumjs.org). Efficiency and correctness on
calculus are provided by the back-end part, which relies on
Orekit (https://www.orekit.org/).

First of all, we describe main features implemented in
original Satorb software (Section II). we looked in litterature
if altenative exist (Section III-A) and which astrodynamics
library could be used (Section III-B). The decision on how
to handle the user interface has also been taken into account
(Section III-D). Afterward, we propose an implementation
closer to current web developpments (Section III-D), based on
a front-end providing all functionnalities to the end-user, and
a back-end handling all calculus to the astrodynamics library.

II. JSATORB SPECIFICATION: AS GOOD AS OUR CURRENT
TEACHING TOOL, SATORB

SatOrb is an orbit and multi-satellite, multi-station mission
analysis software that allows a 2D or 3D display of satellites
and constellations as well as multiple analysis of access,
visibility, coverage and reports on the radio links. SatOrb
was developed by C. Colongo at ISAE-SUPAERO. Other
institutions have contributed to the development such as the
German university TU München, [18].

The main available features of this software are summed up
in the following list:

1) Create satellites which can be given very specific
energetic, orbital or behavioural parameters;

2) Create constellations to group various satellites;
3) Create ground stations and upward, downward or

inter-satellite links;
4) Obtain reports on the evolution of the created elements.
A further detailed list of SatOrb’s main functionalities is

now presented.

A. Main display
The main display presents five menus on top, each of them

with their own settings. There is also the main proper display
(view of the Earth and our satellites, ground stations...) Below
it we have four menus to create elements and a numerical
display on the right. An image of the display can be seen in
figure 1.

Figure 1. SatOrb’s main display. Source: ISAE-Supaero.

The five menus on top are: Project, Display, Simulation,
Analysis and Tools. The four boxes on the bottom allow
the user to create either a satellite, a constellation, a ground
station, or a link. They will be analysed in II-B. There is also a
fifth box further to the left named Position/Access to visualize
data. The simpler menus: Project, Display, Simulation and
Tools are presented below, leaving Analysis to be further
scrutinized in II-C.

1) Project. Simple and quick access to basic project
actions: create, open, save or quit.

2) Display. The display mode provides four different
views: Planisphere, From space, From satellite and From
station. Satellite and station views will only be selectable
if an element has been created. Further settings for
satellite and ground station views are:

• Set vectors to Satellite/Stations, Earth centre, Sun,
and/or Moon.

• Set the attitude of the sphere orientation.
• Show: other satellites and/or the sphere of attitude.
• Set traces on attitude sphere: Earth horizon, Sun,

Moon, Satellite X, Y and/or Z.
• Illuminate satellite behind Earth.
• Fit satellite to attitude sphere.

For planisphere a minimum elevation from ground for
footprint drawing can be set and for both planisphere and

Earth a choice between three Earth images is presented
(Earth image, Earth with less ice and Earth by night).
Day/night and clouds can be on or off.

3) Simulation. It allows to run the simulation: play, stop,
pause, forward or backward. The start date and the time
step (simulation speed) can be selected as well.

4) Tools. Quick access to Date Conversion and TLE
format. The Date Conversion tool allows to convert a
date into the Julian calendar, the CNES Julian day,
the modified Julian day and the NORAD epoch. The
TLE Format shows information on how the NORAD
Two-Line Element Set Format functions.

B. Creation boxes

The four creation boxes on the lower part of the main
display allow to create: a satellite, a constellation, a ground
station, or a link. The user can create a new element (New),
modify an existing element (Mod) or delete an element (Rem).

1) Satellites. There are four modifiable parameters.
• Orbit, where the satellite is named and the orbit

entered (a NORAD TLE set can also be loaded).
The orbit can be:
– Geostationary
– Sun synchronous: altitude or inclination will be

demanded.
– Critically inclined, Sun synchronous
– Repeating ground trace
– Molniya
– Critically inclined
– Circular
– Other

• Orbit parameters. The propagator (Kepler, Brouwer,
Mosaif, SGP4/SDP4), its coordinate system, and the
date are chosen. Main orbital parameters are to be
set too.

• Attitude. Primary and secondary directions of the
satellite are selected.

• Graphics. Colour, the visualization of the leading or
trailing track, the satellite model (cube or cylinder)
and its accessories (solar panels of various sizes)
are chosen.

2) Constellations A constellation can be created either
by entering its parameters, from TLEs database or by
grouping the existing satellites.
The parameters to be introduced are: altitude,
inclination, first orbit plane RAA, number of satellites
(t), number of orbit planes (p) and relative spacing
between satellites in adjacent planes (f). A Graphics
sub-menu allows to customize the colour of the
constellation or of each orbit plane.

3) Ground stations. An index of possible locations on
Earth with the latitude, longitude and altitude data is
already provided. These parameters can be manually
added too. Coverage parameters (minimal and maximal

2

elevation and maximum range) are also to be added and
a colour is to be chosen.

4) Links. Links may be: upward, downward or
inter-satellite. The user will be asked to fill in
information on the transmitting entity (power, line loss
and antenna) and on the receiving entity (line loss,
noise temperatures and antenna) which can be satellites
or ground stations.
For up and downlinks we must also provide the carrier
(frequency, bandwidth, data rate, spectrum utilization,
modulation type, and bit error rate), link losses and
atmospheric losses. For inter-satellite links the link type
and a fast or accurate method for Earth loss is to be
selected. Antennas can be: Circular Parabolic, Horn,
Helix, Dipole 1/2 Wave Patch, Vertical Whip 1/4 Wave,
Yagi or Manual. Each of them with its own further
settings.

C. Analysis

Analysis allows to calculate and obtain information on the
behaviour of created elements.

1) Ephemeris. An analyse for a period of time and a time
step is provided. Ephemeris can be: Position/Velocity,
Keplerian Ephemeris, Longitude, Latitude and Altitude
Ephemeris and Eclipse Times. Output may be a numeric
report or a graph.

2) Manoeuvres. Create or remove manoeuvres. When
created anew the final orbit or the generic speed gains
may be specified as well as the time of the manoeuvre.
If final orbit is chosen, the manoeuvre can be coplanar
(Hohmann transfer or One-Tangent Burn), non coplanar
(variation of inclination, RAAN or both), or generic.
Target orbit ought to be specified too. If ∆V is to
be specified it can be perpendicular to the orbit plane,
tangent to the speed vector or generic (gains in all three
axes).

3) Coverage. The statistics of coverage and figure of merit
or the ground trace are presented for a satellite or
constellation and for a period of time and a specific
region of the Earth (or the entire globe).

4) Access. Access, azimuth, elevation, and range of a
satellite as well as the number of visible satellites of
a constellation for a selected time interval.

5) RF Links. A report of the link budget, the link margin,
signal to noise density, the Doppler shift, Earth warmth
loss, atmospheric loss or the depointing error for one of
the created links and for a selected period of time.

6) Attitude. The latitude/longitude variations for a satellite
with respect of another satellite, ground station or a third
element like the Sun or the Moon for a period of time.

III. EXISTING SOLUTIONS

A. State of the Art - SatOrb Equivalent Softwares

A list with the main similar software packages found is
presented below.

STK/AGI [11]: PC. Free and commercial versions. Systems
Tool Kit (STK) is the foundation of AGI’s product line. It
provides four-dimensional modelling, simulation, and analysis
of objects from land, sea, air, and space in order to evaluate
system performance.

GMAT [15]: Cross platform, Free. NASA open source
product. The General Mission Analysis Tool (GMAT) is an
open-source space mission design tool developed by a team
of NASA, private industry, and public and private contributors.
It is used for real-world engineering studies, as a tool for
education and public engagement, and to fly operational
spacecraft.

FreeFlyer [10]: PC/Linux, commercial. FreeFlyer is
software for space mission design, analysis and operations. It
provides an astrodynamics functionality for missions analysis.

ORSA [19]: Linux/Mac/PC, free. Started in summer 2001
just as a simple collection of celestial mechanics C++ classes,
the ORSA project now collects many general classes, a
graphical interface running under Linux/Unix, Mac OS X and
Windows, and numerous of tutorial programs.

B. State of the Art - Astrodynamic Libraries

In this section four libraries are presented: Orekit, JAT (Java
Astrodynamics Toolbox), TUDAT (TU Delft Astrodynamics
Toolbox), and CelestLab.

Orekit [5]. Developed in Java (cross-platform), Orekit is
a space dynamics open source library. It depends only on the
Java Standard Edition version 8 (or above) and Hipparchus [1]
version 1.0 (or above) libraries at runtime. Its main package
structure is illustrated in figure 2.

Figure 2. Orekit package structure. Source: [5]

Orekit aims at providing accurate and efficient low
level components for the development of flight dynamics
applications. It is designed to be easily used in very different
contexts, from quick studies up to critical operations. Orbit

3

propagation is carried on by automatic differentiation, as
analysed in [2].

Its features are: Time, Geometry (frames, IERS
conventions...), Spacecraft State, Manoeuvres, Propagation
(analytical, numerical or semi-analytical, predefined events...),
Attitude, Orbit determination and file handling and various
Earth Models. It also allows customizable data loading and
presents several languages.

Orekit is highly recognised internationally and is currently
being used by the ESA (as in [7]), or by the CNES [6], which
has selected it as the basis for its space dynamics systems
since 2011. It has also been used for studies by industrial
actors such as EUMETSAT [8].

JAT [3]. A cross platform and open source library to help
users create their own application programs to solve problems
in astrodynamics, mission design, spacecraft navigation,
guidance and control using Java or Matlab. Thanks to the
research, it has been found out that JAT makes use of Orekit.

TUDAT [4]. A set of C++ software libraries, developed
and maintained by staff and students in the Astrodynamics
& Space Missions research group at the Faculty of
Aerospace Engineering, Delft University of Technology, in the
Netherlands. This toolbox is intended to provide users with
functionalities to be able to simulate various astrodynamic
applications.

CelestLab [14]. A space flight dynamics functions library
developed and maintained by CNES for trajectory analysis
and orbit design for various missions. It is written in Scilab
language. It includes more than 200 functions, such as:
orbit propagation, attitude computation, elementary manoeuvre
computation, change of coordinate systems, or three body orbit
analysis.

C. Synthesis

Ensuring that the chosen library fulfills all the available
modules of SatOrb will justify our choice. The comparison
is presented in table I. Orekit generally satisfies the needs
of SatOrb and even provides new features. It lacks the
visualization segment as well as the creation of links
and constellations of satellites. Nevertheless, the growing
importance of this library and its rising international
recognition allows us to choose Orekit. Even though other
JAT seem to also fulfill all the required functionalities, Orekit
seems a more sensible option as it provides support and far
better usability.

Regarding the absence of the visualization segment it is
indeed what we were looking for as it allows us to clearly
differentiate between the user interface part of the project and
the calculations.

1Checked on GoogleScholar on 3 May 2017, duplicates included.
References have also been searched on IEEE Xplore Digital Library resulting
in one reference for Orekit and zero for SatOrb and the other libraries. We
agree that is not a perfect metric, but that give an idea of how living is the
project.

D. First Prototyping Attempts

Once we have made the choice of Orekit as the library that
will engage with all the calculations it is crucial to decide
how to handle the user interface. There are many available
options. A couple of them have been tried and will be here
presented. Keep in mind that we wanted to keep ahigh degree
of modularity between the calculations and the user interface.

One of the options was language R with RStudio. The
existence of a wide range of different packages available
on-line makes R a suitable candidate. Furthermore, Shiny [12]
for R allows to easily develop user interface applications for
the web. Nevertheless, interconnection between R and Java
isn’t that easily handled

A simpler thing would be to keep all the development in
the same programming language. When looking towards user
interface development in Java a first attempt was made with
Swing [16]. Swing in Java provides useful tools to create
an application with a display, buttons and other elements.
But being JavaFX a much newer and easier GUI widget
tool kit in Java, a change to JavaFX was quickly made. In
addition, JavaFX intends to replace Swing. It is also worth
mentioning the use of SceneBuilder [9] to help the creation of
the various elements of the interface such as buttons, menus,
panes... Regarding the use of JavaFX, it must be said that there
are plenty of tutorials on-line and the use of SceneBuilder
facilitates the process very much. Among the many tutorials
used to learn and understand how to work with GUIs are [17]
or [13].

Some prototyping has therefor been decided (figure 3.
However, this solution remained as a heavy client

application running, and was lacking of modularity.
Dependency to java was high, and we wanted to go
further in the separation between GUI part and core code.
This way, we avoid to be totally relying on the interface part,
or the calculus part. For all these reasons, we decided to
drastically change our architecture.

IV. WEBSERVICE ARCHITECTURE USING A REST
IMPLEMENTATION

A. Architectural view

Nowadays more and more software propose a service
approach (google drive, microsoft office, dropbox, slack). The
applications running on the user side are only a graphical
representation of distributed models and calculus. On a model
modification, or a calculus request answer, the user interface
is updated in order to always have the last informations
displayed. JSatorb architecutre is build on the same idea. We
have a front-end which manage user interactions and interfaces
and a backend which manage data and calculus request made
by the users (Fig. 4).

B. Front-end

Like explained above, front-end application is the interface
which the user will interact with (Fig. 5). That mean that
after the basic element of the page has been load on the
browser, the web page will act like a standalone application

4

Feature type
aaaaaaa

Features
Software

SatOrb OreKit JAT TUDAT CelestLab

Visualization
Terminal 3 3 3 3 3

2D (planisphere) 3 - 3 - 3
3D (Earth) 3 - 3 - -

Ephemeris

Position/Velocity 3 3 3 3 3
Keplerian Parameters 3 3 3 3 3

Eclipses 3 3 3 3 3

Manoeuvres Impulse 3 3 3 3 3
Continuous - 3 3 3 3

Time

UTC 3 3 3 3 3
TAI - 3 3 3 3

Julian 3 3 3 3 3
NORAD 3 - - - -

Propagators

Kepler 3 3 3 3 3
Brouwer 3 - - - -
Mosaif 3 - - - -

SGP4/SDP4 3 3 3 - -
Central - 3 3 - 3

Lyddane - - - - 3
Eckstein-Hescher - 3 3 - 3
Cohessy Wiltshire - - 3 3 3

Others

TLE Format 3 3 3 3 3
Coverage 3 3 3 - 3

Constellations 3 - - - -
Ground stations 3 3 3 3 3

Links 3 - - - -
Language VisualBasic Java Java C++ Scilab

References1 74 88 75 52 13

Table I
SOFTWARE COMPARISON.

Figure 3. JavaFX JSatOrb’s example view. We can see ground stations located in London, Cordoba, Houston, and Sydney. The orbit represented in this demo
is a sun-synchronous orbit. The sun synchronous orbit is a circular retrograde orbit. It can be appreciated how the circle of visibility stretches and deforms
itself when reaching the poles.

5

Front-end

Back-end

«Web Browser»
User Interface

«Component»
Facade / Gateway

«Component»
Coverage

«Component»
Visibility

«Component»
Propagation

«Component»
TLE

User

Figure 4. An Architecture representation of JSatorb and his web services

by make itself request to others components. This is called a
web application or web app. The application is structure in
several part re-usable called front-end components.

AngularJs has been used to develop JSatorb to facilitate
the integration of the different part of the applications. It is a
javascript framework which is use to separate the application
in several part which are using services to communicate. In
addition to the parts used to interact with the user, Jsatorb
allows the visualization of orbits. Several views are available,
including the planisphere view and the 3D view of the earth.
The 3D view is implemented with cesium.js an open source
library using graphical acceleration in the browser (WebGl).

C. Back-end

The backend is composed of multiple services components.
Each one of them is used to manage one core domain. That
mean that for example one service is looking after storing data,
an other is calculating propagations, an other for eclipses ...
Each services can be deployed in your local computer or on
an other material on the same network. Component connection
and communication are cornerstones of the application a
protocol is needed to called distributed calculations. There are
many protocols and implementations that can handle this type
of task (RMI, Corba, SOAP, REST, ...). In an other hand
we would like to have a cross platform application available
throw a web browser. In order to make it possible, the protocol
chosen need to be compatible with a web browser.

REST (REpresentational State Transfer) is based on HTTP
protocol. It is fully compatible with web browser, and actually
largely used in web development. Unlike SOAP protocol,
there is no third party library, or tool-kit needed. As a result

of this, select REST protocol will reduce coupling between
components and it is easy to understand for user/developer. For
example to use the propagation service to make a calculation,
an HTTP Post Request has to be send to the service address
with a pre-defined url. The request will include required inputs
parameters to make the calculus.

POST myServ iceAddres s / p r o p a g a t i o n
{

” i n i t i a l D a t e ” : ”2004−01−25T22 : 3 2 : 0 0 ” ,
” d u r a t i o n ” : 1200 ,
” s t e p T ” : 60 ,
” a ” : 24396159 ,
” e ” : 0 .72831215 ,
” i ” : 7 ,
” omega ” : 1 8 0 ,
” r a a n ” : 261 ,
”lM ” : 0

}

We also made the choice to use a component as a gateway
between the front-end and all the others backend services. This
gateway will receive request from a user interface to transfer
them in one or several others services (Fig. 6). This is a facade
design pattern and the user interface don’t have to know every
service he is using. This will simplify the interaction of the
user interface.

V. CONCLUSIONS AND FURTHER DEVELOPMENT

JSatOrb is a attempt to provide to user a software tool
dedicated to orbital calculation and designed for pedagogical
purposes, with professional level features outputs. It must

6

Figure 5. JSatorb user interface (front end)

be open source, cross platform, modular, with a clear
differenciation between user interface and calculus code core.
Litterature review allow us to select Orekit as our core calculus
library. First tests confort us is orienting the development into
a current web design application: a front-end for the GUI, and
a back-end with call to calculus code core.

Concretely, JSatorb project is now an open-source
(MIT license) and under development https://sourceforge.
isae.fr/projects/jsatorb/repository. A first version is available
(devellopped with Angular, based with a home-made server

calling Orekit libraries but not developped as a RESTfull
application yet).

We have recently discovered also Astropy http://www.
astropy.org/ which could be a python alternative to Orekit.
Robustness of the approach we choose allow us the possibility
to switch to it with little development cost. It doesn’t appear
in the comparison table as we didn’t know it at the period this
work was achieve.

This is only the beggining of the development of JSatorb
and we hope to have feedbacks from developpers and users.

7

Add a satellite with orbit

Display ephemerids

Calculation ephemerids request

Ephemerids Response

Add a ground station Visibility calculations request

visibility response
Display visibiltiy

User throw his UI Gateway Propagator
Services

Visibility
Services

Coverage
Service

Coverage Map Windows Coverage calculation request

Coverage repsonseDisplay Converage map

Figure 6. A sequence diagram of components interactions with satorb

REFERENCES

[1] Hipparchus site. https://hipparchus.org/. Accessed: 2017-05-02.
[2] Antolino Andrea and Luc Maisonobe. Automatic differentiation for

propagation of orbit uncertainties. In Final Stardust Conference,
November 2016.

[3] Tobias Berthold. Java Astrodynamics Toolkit. http://jat.sourceforge.net/.
Accessed: 2017-03-28.

[4] TU Delft. Tu Delft Astrodynamics Toolbox. http://tudat.tudelft.nl/
projects/tudat/wiki. Accessed: 2017-03-28.

[5] CS Systèmes d’Information et al. Orekit. https://www.orekit.org/.
Accessed: 2017-04-18.

[6] Centre National d’Études Spatiales. Cnes. https://cnes.fr/fr. Accessed:
2017-05-02.

[7] ESA. Socis - the esa summer of code in space. http:
//www.esa.int/Our Activities/Space Engineering Technology/SOCIS
The ESA Summer of Code in Space/(print). Accessed: 2017-05-02.

[8] European Organisation for the Exploitation of Meteorological Satellites.
Eumetsat. http://www.eumetsat.int/website/home/index.html. Accessed:
2017-05-02.

[9] Gluon. Scene Builder. http://gluonhq.com/products/scene-builder/.
Accessed: 2017-06-19.

[10] a.i. solutions Inc. FreeFlyer. https://ai-solutions.com/freeflyer/.
Accessed: 2017-03-28.

[11] Analytical Graphics (AGI) Inc. Systems tool kit (STK). https://www.
agi.com/products/stk/. Accessed: 2017-03-28.

[12] RStudio Inc. Shiny. https://shiny.rstudio.com/. Accessed: 2017-06-19.

[13] Marco Jakob. code.makery: JavaFX8 tutorial. http://code.makery.ch/
library/javafx-8-tutorial/. Accessed: 2017-06-19.

[14] Alain Lamy, Thierry Martin, and Guillaume Azema. CelestLab.
https://forge.scilab.org/index.php/p/celestlab/page/CelestLab/. Accessed:
2017-04-08.

[15] NASA. GMAT. http://gmatcentral.org/. Accessed: 2017-03-28.
[16] Oracle. The java tutorials. getting started with swing. https://docs.oracle.

com/javase/tutorial/uiswing/start/. Accessed: 2017-06-19.
[17] Oracle. Java Documentation. http://docs.oracle.com/javase/8/

javase-clienttechnologies.htm. Accessed: 2017-06-19.
[18] Prof. Dr. rer. nat. U. Walter. SatOrb 2004. TU München, 2004.
[19] Pasquale Tricarico. ORSA. http://orsa.sourceforge.net/. Accessed:

2017-03-28.

8

