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ABSTRACT

Spacecraft conjunction management plays a crucial role in the mitigation of space collisions.

When a conjunction event occurs, resources and time are spent analyzing, planning, and

potentially maneuvering the spacecraft. This work contributes to a subpart of the problem:

Confidently identifying events that will not lead to a high collision probability, and

therefore do not require further investigation. The method reduces the dimensionality of

the data via principal component analysis (PCA) on a subset of features. High-risk regions

are then determined by clustering the projected data, and events that do not belong to

a high-risk cluster are pruned. A genetic algorithm (GA) is developed to optimize the

number of clusters and feature selection of the model. Furthermore, an ensemble learning

framework is proposed to combine the suboptimal models for better generalization. The

results show that the first set of parameters pruned approximately 50% of the events

in the testing set with no false negatives, whereas the second set of parameters pruned

70% of the events and maintained a near-perfect recall. These results could benefit the

optimization of operational resources and allow operators to focus better on the events of

interest.
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1 Introduction

The advent of the new space economy has resulted in

various challenges in spacecraft operations. Each year,

the European Space Agency (ESA) tallies an estimated

population of objects around the Earth, which has

expanded quite considerably over the last decade, with

no sign of stopping any time soon [1, 2]. In general, space

is becoming more accessible to private companies, and

this induces more satellites to be launched, including so-

called mega-constellations such as Starlink, OneWeb, and

Project Kuiper [3, 4]. Simultaneously, the consequences

of a lack of proper end-of-life management in current and

previous missions create space junk. Each collision can

generate more debris, thereby increasing the likelihood

of future collisions. This vicious circle is often referred

to as the Kessler syndrome or collisional cascading [5,

6]. There are multiple ways to prevent the situation

from worsening, including proper spacecraft end-of-life

management [7], active space debris removal [8, 9], and

improved operations to mitigate collision risk [4]. This

study focuses on the latter aspect.

When a close approach between two spacecraft is

suspected, a conjunction data message (CDM) is sent to

the control center with several parameters and computed

risks. Several CDMs are issued for a single event. A few

days before the time of closest approach (TCA), the last

CDM is analyzed, and in the case of a risky event, the

operations team starts to plan for a potential collision

avoidance maneuver [10, 11]. This time-sensitive process

requires human and computational resources. There is

a risk threshold, above which the spacecraft must be

maneuvered. The computed analytical risk may evolve

rapidly after the last CDM is received, that is, two days

before the TCA. In some cases, the risk of a dangerous

encounter decreases below the maneuver threshold. This

is referred to as a false positive; manpower and spacecraft
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2 S. Henry, R. Armellin, T. Gateau

Nomenclature

nclusters Number of clusters in the K-means
ncomponents Number of principal components in the

PCA
nelites Number of individuals that are kept

through the next iteration of the genetic
algorithm

nfeatures Number of features in the dataset
ngen Maximum number of generations in the

genetic algorithm
npop Size of population in the genetic algorithm
ntournament Number of individuals participating in the

selection tournament

PC Probability of collision
rmut Mutation rate in the genetic algorithm
rxover Crossover rate in the genetic algorithm
γhr Concentration of high-risk events in a

cluster
δ Small positive real number much smaller

than one
ϵ Threshold of high-risk concentration above

which a cluster is dangerous
θ Majority voting threshold

fuel can be spared by not maneuvering if it is possible

to identify those events in advance with confidence.

Conversely, an event deemed low-risk can become a high-

risk event within two days before the closest approach.

This is referred to as a false negative, and it is crucial

to identify such events in advance to take action as soon

as possible. As in many other fields, the importance of

lowering risks as much as possible cannot mean flagging

any possible encounter as dangerous because it renders

the information dull. The arguments above highlight the

importance of automating the collision avoidance process

and making it more robust.

Data science is a promising path to use in addition to

analytical methods computing the probability of collision

(for example, Refs. [12, 13]), which motivated ESA to

organize a machine learning competition [14] with a

dataset containing real conjunction events. The objective

of the competition was to develop a model that can

classify whether an event is dangerous. A variety of

methods have been proposed to solve this problem with

data, but not all of them involved elaborate models.

The winning team did not use machine learning but

rather proposed a set of decision rules based on data

statistics [14]. Although it is a light model, the main

advantage of this approach is that the chain of decisions

and relevance of each feature are easily interpretable.

Gradient-boosted decision trees (GBT) [15] are a type of

ensemble learning model that has been applied to this

problem [14, 16] and have shown good results while also

providing some type of feature relevance. The ensemble

learning framework combines multiple models in the

decision process to improve the generalization of the

output. Recurrent neural networks [17] have also been

investigated owing to their inherent ability to manage

sequential inputs [14, 16, 18, 19]. Notably, the team in

third place used Manhattan long short-term memory

(LSTM) siamese networks as an ensemble learning

framework. The purpose of the siamese architecture is

to analyze the similarity between pairs of events that

are anomalous (i.e. that become dangerous although

they were safe at the decision time, or vice versa)

and non-anomalous (i.e., whose risk level remains the

same after the decision time). In addition, studies

proposed the use of Bayesian inference in addition

to LSTM to predict the distributions of CDMs [18].

This method has several advantages: It can predict

all the features of the CDM with uncertainties and

generate synthetic data [20, 21]. Another notable study

investigated the Dempster–Shaffer theory of evidence to

account for epistemic uncertainty in the computation

of collision probabilities. This study coupled neural

networks, random forests, support vector machines, and

k-nearest neighbors on simulated datasets [22, 23].

All the aforementioned practices lead to good overall

classification but still classify a non-negligible number

of dangerous events as safe. This has lead this work

to investigate a method that favors a very low number

of false negatives by design. This would eventually

allow for the reduction or optimization of computational

resources by filtering superfluous events. This is achieved

using clustering techniques coupled with a genetic

optimizer to identify dangerous regions in the dataset.

An ensemble voting scheme, which has been proven

to work well in previous studies, is also integrated.

The remainder of this paper is organized as follows.

First, the problem is described using data and objective
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functions. Second, a pruning algorithm is developed via

the identification of high-risk clusters, optimization, and

ensemble learning. Finally, the algorithm is tested using

multiple configurations.

2 Problem description

This study approaches the topic as a classification

problem using the conjunction event timeline originally

presented during the competition. A conjunction event

consists of a series of timed CDMs, in which only the

CDMs at least two days before the TCA can be used

to predict the collision probability. If the last CDM of

the series is within one day of the TCA, it is used as

the solution. Hence, to be usable, an event must have at

least one CDM two days before the TCA and one CDM

within one day of the TCA. Figure 1 illustrates a usable

conjunction event graphically. The original training set for

the competition comprised 13,154 events, of which only

66 were high-risk and usable. The testing set comprised

2,167 usable events, of which 150 were high risk. Thus,

there was a strong imbalance between the two sets. This

study uses the raw data comprising 18,379 events and

splits the test/train to obtain a homogeneous distribution

of high-risk events. The same standard as that used in

the competition is used: An event is considered high-risk

if the collision probability PC is greater than 10−6, where

PC is computed using the method developed in Ref. [12].

CDM CDM

TCA-2 days TCA-1 days TCA

CDM
decision

CDM
solution

Time

Fig. 1 Graphical representation of a usable conjunction
event.

The benchmark for comparison during the competition

was the latest risk predicate (LRP), which simply

estimates the final risk using the risk of the CDM

at the decision time. This solution is trivial, yet

difficult to improve, as highlighted in the results of

the competition [14]. While the competition aimed to

find a globally well-balanced model, the purpose of the

subsequent work is to prune as many events as possible,

including as few high-risk events as possible. A few

metrics for analyzing the solutions are highlighted here.

The recall is the fraction of true positive events over the

number of positive events in the solution:

recall =
true positive

true positive + false negative
(1)

To keep the operations as safe as possible, the number

of false negatives should remain as low as possible;

therefore, recall should be as close to one as possible.

However, considering recall alone is too conservative as

one could flag every event as dangerous, even though the

majority is not. Therefore, another function for evaluating

the model performance is the precision, which is the

fraction of the number of true positive answers over all

events detected as positive:

precision =
true positive

true positive + false positive
(2)

To maintain the value of this function high, the number

of false positives must be reduced. Again, considering

this function alone is not a good strategy, as it does

not require a low false-negative rate. Instead a balance

between precision and recall must be found, which is

commonly done with the Fβ measure [24]. β = 2 is

selected to assign more weight to the recall,

F2 = 5
precision · recall

4precision+ recall
(3)

This paper aims to confidently prune as many events

as possible; thus, it aims to guarantee a near-perfect

recall and maximize precision. The function to optimize

loses one dimension as recall is fixed. Let δ ∈ R+ be an

arbitrarily chosen threshold (δ ≪ 1); the fitness function

can be interpreted as

F =

{
true negative, if recall > 1− δ

0, otherwise
(4)

3 Methodology

3.1 Data processing

The following pipeline is used to preprocess the data.

For an exhaustive description of the data features,

please refer to Ref. [14] and the competition dataset①.

The c object type column has been removed because

it is not a number (NaN). Column c rcs estimate is

removed because it is often empty. All the CDMs

containing empty or NaN values for the remaining

attributes are excluded. Only events in which there

is at least one CDM two days before the TCA and

a CDM within one day of the TCA are kept. The

features t position covariance, c position covariance, and

① https://kelvins.esa.int/collision-avoidance-challenge/data/

https://kelvins.esa.int/collision-avoidance-challenge/data/
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max risk scaling are considered as their log10 values. For

each event, only the CDM closest to the decision time

is used as the input and the CDM closest to the TCA

is used as the solution. This last step assumes a Markov

process.

After preprocessing, 9,666 events remain, of which 206

are high-risk. 73 high-risk events have a CDM at the

decision time that is low-risk, meaning that the latest

risk predicate (LRP) would wrongly classify them as safe.

This scenario should be avoided for safety reasons. The

data is divided as follows: 75% for training and 25%

for testing. The inputs are transformed using a standard

scaler from Scikit-Learn [25]. Only the training set is used

to fit the standard scaler; however, both the training and

testing sets are scaled.

3.2 Pruning algorithm

The strategy adopted in this study involves separating

the data into clusters, where each cluster can either be

concentrated in dangerous events or not. An event is

considered safe to prune if it does not belong to a cluster

with a high density of dangerous events. Because of the

large number of features in the data, it is practical to first

select a subset of attributes and reduce the dimensionality

of the data before clustering. With the training data

solutions available, the concentration of high-risk events

in a cluster γhr can be computed. The quantity ϵ is defined

as the threshold concentration of high-risk events above

which a cluster is identified as dangerous. All clusters

in which γhr > ϵ are considered dangerous. The lower

the value of ϵ, the more conservative the classification;

however, fewer events are pruned. Therefore, for the

training set, it is guaranteed that each cluster deemed

safe has a false negative concentration lower than ϵ.

This favors a globally high recall. The false negative

concentration is not bounded on the testing set but is

expected to remain low if the model generalizes well.

Principal component analysis (PCA) [26] is commonly

used in statistics to reduce the dimensionality of a

dataset, and it is chosen for this study because it is

very mature and fast. Mini-batch K-means [27] is chosen

as the clustering algorithm because it has a similar

performance and is faster than regular K-means, a

standard algorithm for clustering. Thus, a simple model

consists of PCA and K-means, and is parameterized by

the number of components for the PCA, ncomponents (1

integer), number of clusters for the K-means, nclusters

(1 integer), and whether a specific feature is selected

(nfeatures booleans). The selection of parameters can be

either arbitrary or determined using an optimization

scheme (see Section 3.3). Note that ϵ is not considered in

these parameters because it enforces the quality of the

solution.

3.3 Optimized parameters

Multiple approaches can be used to optimize the

parameters; however, here, genetic algorithms (GA)

are selected because of the discrete nature of the

parameters. Brute force is not an option; assuming a

fixed number of PCA components and clusters, there

are still 100 features to select, which sums up to 2100

possibilities. GAs are metaheuristic procedures that allow

the identification of optima by imitating nature-like

evolutionary principles. A certain set of parameters must

be adapted to achieve better convergence [28–30]. The

main idea behind tweaking each parameter is the global

balance between exploration and exploitation. The details

of the implementation of this study are shown in Table 1.

A population of parameters consists of npop sets of

parameters that are individually tested. A small random

population of five individuals, with only three features,

is represented in Table 1. A large population usually

performs better because it covers a larger part of the

domain, especially at the beginning when randomly

generated. However, large populations require additional

computational power and memory per generation. A

Table 1 Representation of a population of sets of parameters, where npop = 5

gene 1 gene 2 gene 3 gene 4 gene 5
ncomponents nclusters risk max risk scaling time to tca

Individual 1 2 7 0 1 0
Individual 2 4 3 0 1 1
Individual 3 3 10 1 0 1
Individual 4 5 7 0 1 0
Individual 5 7 5 1 1 0
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small population may converge faster but more likely

towards a suboptimal solution. In general, a larger

population is preferred to more generations [31]. The

initial parent population is generated randomly or

otherwise, and the performance of each individual is

assessed. The offspring population is generated from

the parent population. The pipeline from the parent

to offspring consists of four main steps:

(1) Selection: The most usual way to select an

individual from the parent population is either

randomly or via a tournament. The latter is chosen

here because it tends to raise the quality of the

population [32]. In this case, the tournament makes

ntournament randomly picked parents compete, and

the one with the best fitness is selected.

(2) Crossover: Once two parents have been selected

(from two different tournaments), their genes are

mixed to create two new individuals. The idea is to

try to obtain the best features from both parents.

This implementation uses a uniform crossover. The

two new individuals start as a copy of their respective

parent. Then, per gene, they have a chance rxover to

switch to the particular gene of the other parent.

(3) Mutation: After crossover, each gene can randomly

mutate. A high mutation rate allows the offspring

to differ from the parents and thus allows the

exploration of a greater part of the domain.

Conversely, a low mutation rate is more suitable

when one attempts to refine the previous generation

and converge. The mutation used here is a random

integer mutation, characterized by the probability

of mutation per gene, rmut. If there is mutation, the

random integer can be anywhere in the allowable

domain and can also be the same as the previous

gene (so the binary elements have a chance rmut/2

to change).

(4) Fitness survival: Finally, once the entire

offspring population is generated (it contains npop

individuals), its nelites worst individuals are replaced

with the nelites best individuals of the parent

population. It ensures that the best solutions do

not disappear.

The offspring population becomes the parent

population for the next step, and the algorithm stops

after the maximum number of generations. At the end

of the algorithm, the parameters of the best individual

in the offspring population are maintained. The genetic

optimization scheme is summarized in Algorithm 1 and

Fig. 2.

F2 is chosen as the fitness function for optimization

because it indirectly maximizes the number of true

negatives, provided that ϵ is extremely small. Suppose

the number of false negatives remains low and nearly

constant; consequently, the number of true positives also

remains nearly constant. Furthermore, assuming that

only a small percentage of positive events are incorrectly

classified, recall remains high and constant. In this case,

increasing the F2 function naturally increases precision.

This means reducing the number of false positives (i.e.,

keeping the number of true positives constant) or raising

the number of true negatives. As with other machine

learning schemes, the algorithm is prone to overfitting

and thus may not generalize well to the testing set. The

more generations there are, the more optimal the solution

is on the training set, but not necessarily on the testing

set.

3.4 Ensemble learning

Although the pruning algorithm presented in Section 3.2

can be used as a standalone algorithm, it is prone to

exploring a local optimum and overfitting the training

data when there are too many generations. Instead,

aggregating multiple weaker models can result in better

generalization, which is the underlying idea behind

Initial

parent

Generate
offspring

PCA

PCA

PCA

K-means

K-means

K-means

Fitness

Fitness

Fitness

Max
generation?

Best offspring

Parent←Offspring

Evaluate population

Offspring 1

Offspring 2

Offspring

npep

Fig. 2 Flowchart of training via genetic optimization.
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Algorithm 1 Search for optimal parameters with a genetic algorithm

parent ← initialization()

evaluate performance of parent (PCA + K-means)

while i ⩽ ngen do
offspring ← {}
while |offspring| < npop do

individuals ← {}
while k ⩽ 2 do /*selection of 2 individuals for crossover*/

individual ← tournament(parents, ntournament) /*tournament selection*/

individuals ← individuals ∪ {individual}
k ← k + 1

end while

individuals ← crossover(individuals, rxover) /*random swap of genes between the individuals*/

individuals ← mutation(individuals, rmut) /*random mutation of genes*/

offspring ← offspring ∪ {individuals}
end while

evaluate performance of offspring (PCA + K-means)

offspring ← elite survival(offspring, parent, nelites) /*keep the best parents*/

parent ← offspring

i← i+ 1
end while

return best individual in parent

ensemble learning [15, 33]. Gradient-boosted trees,

following ensemble learning logic, have already been

proven to enhance the performance of the LRP in the

competition summary [14, 16]. Similar to the standard

approaches of forests of trees, one could use an ensemble

of sub-models created as described in Section 3.3 to

improve their specific performance.

An ensemble learner comprises several sub-models or

learners. The number of learners in the ensemble model is

called the ensemble size and can be determined in multiple

ways [33, 34]. A fixed number of learners is chosen in this

case. Each of the sub-models is created and trained as in

Algorithm 1. The training of each learner is important.

The training depth is characterized by the number of

iterations. By adjusting this parameter, stronger or

weaker learners can be combined. A few configurations

with shallow and deep models are presented in Section 4.3.

When an event needs to be classified, it is first

estimated using all the sub-models. There are different

ways of combining models [33], from which we choose

a simple variant of majority voting. Typically, an event

that is estimated to be positive by at least 50% of the

sub-models is classified as positive. However, this is not

the rule chosen here. Given that the method favors a very

low false negative concentration, the threshold θ is placed

at a higher percentage. The greater the ensemble size,

the lower the importance of a particular learner in the

final classification. This has a mixed impact: Whether a

model is particularly good or bad, its importance is only

moderate in the final classification. A flowchart of the

training of the ensemble learning model is displayed in

Fig. 3.

Best offspring 1

Best offspring 2

Best offspring
nmodels

Initial parent 1

Initial parent 2 Model

GA

GA

GA

A

G

G

R

E

G

A

T

E
Initial parent
nmodels

Ensemble learing

Fig. 3 Flowchart of the training of the ensemble model.

4 Results

4.1 Handpicked feature selection

The results are based on a random data split, the

statistics of which are presented in Table 2. Several
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handpicked features are selected from the list of

important features in Ref. [14]: risk, miss distance,

max risk scaling, c position covariance det, c sigma t,

t position covariance det, and c obs used. An explanation

of these features is provided in the Appendix. After the

training set is used to identify the principal components

(ncomponents = 5), the data can be projected, as

illustrated in Fig. 4. The high-risk events are mainly

concentrated in one region of the projection. A smaller

region contains two high-risk events in the training set,

but not in the testing set. A K-means algorithm is

used to cluster the data (nclusters = 5) and identify the

dangerous clusters. The clusters used in this example

are shown in Fig. 5, and Tables 3 and 4 highlight the

proportion of high-risk events in each cluster. If one is

ready to accept a maximum concentration of ϵ = 0.1%

Table 2 Training and testing sets obtained from a random
split of the data

# events
# high
risk

# false
negative

# false
positive

Train 7,249 163 57 180
Test 2,417 40 16 77
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Fig. 4 Scatter of the data on its first two principal
components. Left: training set. Right: testing set.
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Fig. 5 Clusters obtained with a K-means algorithm of five
clusters on the training data.

Table 3 K-means results over the training set

Cluster # in cluster # high risk % high risk

1 2,750 158 5.75
2 1,461 1 0.068
3 113 2 1.77
4 2,814 2 0.07
5 111 0 0

Table 4 K-means results over the testing set

Cluster # in cluster # high risk % high risk

1 922 39 4.23
2 482 0 0
3 30 0 0
4 938 1 0.11
5 45 0 0

high-risk events in the discarded clusters, then it would be

possible to rule out Clusters 2, 4, and 5 or 4,386/7,249 =

61% of events. Pruning the same clusters on the testing

set results in 1,465/2,417 = 61% of discarded events.

The metrics of the fitness functions in this example are

listed in Tables 7 and 8 for the training and testing sets,

respectively.

4.2 Optimized feature selection

The Pymoo library [35] is used for the GA. The

population size is set to npop = 100 because it was

found to have a good balance between diversity and

computation time. The number of participants in the

selection tournament is maintained at the default value of

ntournament = 2. The mutation rate is set to rmut = 0.05

and the crossover rate is set to rxover = 0.05. These

values are selected in the low range because there are

many features, and excessively high values make the

algorithm unsuitable for exploitation. The number of

elites is maintained at a default value of nelites = 1.

The authors do not claim that the aforementioned

genetic optimizer parameters are optimal. By using the

principles described in Section 3.3, the parameters were

determined by experimenting with the training data on

the population size, the mutation rate, and the crossover

rate. A typical learning curve for specific GA training

on F2 is shown in Fig. 6, where it can be observed that

the F2 function increases with generations because of

precision but not because of an increase in recall.

The overall result of the optimization depends on (1)

the split of the data and (2) the randomness of the GA.

Consequently, it is more useful to examine the statistics
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Fig. 6 Example of the learning curve obtained during genetic
optimization (ϵ = 0.001).

over multiple experiments rather than a single case. The

following experiment simulates 50 data splits, for which a

GA is trained. The experiment is repeated using the same

50 data splits but with different numbers of iterations. ϵ

is maintained at zero, indicating that the recall should be

perfect in the training set. The mean performances of the

obtained solutions, given the number of iterations, are

presented in Tables 5 and 6 for the training and testing

sets, respectively. It is observed that maintaining perfect

recall on the training set does not necessarily guarantee

perfect recall on the testing set. The recall of the testing

set decreases as the number of generations increases.

4.3 Ensemble learning

A total of 50 models are trained and assembled. If

θ percent or more of the models classify an event as

dangerous, then it is classified as dangerous; otherwise,

it is not. Two approaches are tested in the study. First,

there are only three generations per GA, which means

that the sub-models are shallower and more general. The

majority voting threshold for this particular ensemble

model is set at θ = 85%. Second, there are 50 generations

per GA, meaning that the sub-models are more optimized

on the training set (but not necessarily on the testing

set). The majority voting threshold is slightly lowered to

θ = 80% for better generalization. The threshold ϵ is set

to 0.001 in both cases and the remaining parameters for

the GA follow the values in Section 4.2. The experiment

is conducted using the same data split as in Section 4.1. A

typical training curve as the number of models increased

is shown in Fig. 7. The recall of the training data

consistently stays near one by design. The recall of the

test set drops after the fourth model is added; however,

ensemble voting allows to filter out the mistakes when

1.0

0.8

0.6

0.4

0.2

0.0

M
e
tr

ic

0 10 20 30 40 50

# models

F
2
 train

F
2
 test

Recall train

Precision train

Precision test

Recall test

Fig. 7 Learning curve obtained during ensemble learning
with sub-models of three generations.

Table 5 Mean (µ) and (σ) standard deviation of the classification metrics on 50 data splits depending on the depth of the
genetic algorithm and training set

Generations
recall precision F2 # pruned

µ σ µ σ µ σ µ σ

3 1 0 0.0250 0.0016 0.1134 0.0066 1,063.6 330.43
20 1 0 0.0403 0.0068 0.1730 0.0247 2,840.7 581.34
50 1 0 0.0477 0.0068 0.1998 0.0236 3,967.2 418.32
100 1 0 0.0518 0.0070 0.2139 0.0239 4,231.1 356.79

Table 6 Mean (µ) and standard deviation (σ) of classification metrics on 50 data splits depending on the depth of the
genetic algorithm and testing set

Generations
recall precision F2 # pruned

µ σ µ σ µ σ µ σ

3 0.9867 0.0159 0.0236 0.0036 0.1074 0.0151 356.14 113.76
20 0.9665 0.0257 0.0372 0.0073 0.1603 0.0274 1,114.2 189.36
50 0.9579 0.0311 0.0436 0.0076 0.1835 0.0270 1,323.2 136.37
100 0.9515 0.0351 0.0468 0.0075 0.1949 0.0261 1,409.5 120.22
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more models are added. The curve of the F2 function

smoothens as the number of models increases because of

voting.

The metrics for the shallow and deep approaches are

Table 7 Results between different approaches on the
training set

Cluster recall precision F2 # pruned

LRP 0.6503 0.3706 0.5650 6,963
GBT 0.6380 0.5333 0.6139 7,086
Handpicked 0.9816 0.0559 0.2276 4,386
Ensemble shallow 1 0.0482 0.2019 3,864
Ensemble deep 0.9816 0.0759 0.28975 5,137

Table 8 Results between different approaches on the testing
set

Cluster recall precision F2 # pruned

LRP 0.6000 0.2376 0.4597 2,316
GBT 0.5750 0.2949 0.4832 2,377
Handpicked 0.9750 0.0410 0.1754 1,465
Ensemble shallow 1 0.0367 0.1601 1,328
Ensemble deep 0.9750 0.0537 0.2066 1,690

presented in Tables 7 and 8 for the training and testing

sets, respectively. In the shallow approach, the ensemble

model achieves a perfect recall, and prunes 1,328 events or

55% of the testing set. This means that in this particular

data split, it is possible to safely remove the majority of

events without any mistakes. On the testing set for the

deep approach, the ensemble learning algorithm manages

to prune 255 or 10% more cases than the handpicked

selection while maintaining the same recall. In total, 70%

of the events are pruned, and only one high-risk event

is removed. For comparison, classifications from LRP

and GBT (see Section 4.4) are also provided in Tables 7

and 8, and the values of their recall show that they have

significantly more false negatives. This illustrates that

the method presented in this paper is more cautious than

the compared literature and shows that an event deemed

as low-risk by this approach is safer to prune.

Histograms of event populations before and after

pruning are shown in Figs. 8 and 9 for shallow and deep

models, respectively. The more conservative approach
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correctly removes three events that were considered high-

risk at decision time, and the other removed events

already were under the “high-risk” threshold. The deeper

approach does not perform better in pruning events at

high-risk during decision time but prunes a larger portion

of low-risk events overall.

The ensemble method also offers the possibility of

ranking the importance of attributes by counting the

number of times each attribute is used as the best parent

of the sub-models. Table 9 displays the feature relevance

obtained by the ensemble model composed of deep sub-

models. Risk and maximum risk scaling are the most

relevant features obtained by the algorithm, as they are

used in all the sub-models, and the third most relevant

feature is the Mahalanobis distance. The relevance of

these features coincides with the findings of GBT [14].

4.4 Gradient boosted decision trees

It is demonstrated in the paper summarizing the

argument that GBT can slightly improve F2 compared

to the LRP [14]. The experiment in this section applies

the same methodology as described in Ref. [14], with the

difference that the number of estimators is increased to

n estimators = 50 and the learning rate is lowered to

learning rate = 0.02. The LGBMRegressor model from

the LightGBM library [36] is used as a framework. For the

Table 9 Feature relevance from ensemble learning with sub-
models of 50 generations. An explanation of these can be
found in the Appendix

Rank Feature Fraction used

1 risk 1
2 max risk scaling 1
3 mahalanobis distance 0.96
4 c sedr 0.72
5 c position covariance det 0.7
6 miss distance 0.68
7 t ctdot r 0.68
8 c j2k inc 0.62
9 c obs used 0.6
10 t sigma ndot 0.6
11 t sedr 0.58
12 c cr area over mass 0.56
13 t cndot rdot 0.54
14 t sigma tdot 0.54
15 relative position r 0.52
16 t time lastob start 0.52
17 c residuals accepted 0.52
18 t time lastob end 0.5
19 t cndot t 0.5
20 c time lastob start 0.5

particular data split, this model also results in a higher

F2 compared to the LRP, as shown in Tables 7 and 8.

The increase in F2 originates from a higher precision

rather than a higher recall. The GBT provides better

overall models for classification, but it is not designed

to constrain the false negative rate, in contrast to the

algorithm created in this study.

5 Conclusions

In conclusion, the present study defined a technique to

cautiously prune a considerable proportion of conjunction

events. It does not enable the removal of all low-risk

events, and thus directly classifies an event as high-risk.

Nevertheless, it can act as a first filter to determine

whether it is worth executing more in-depth or resource-

consuming analyses on a conjunction event. A method

consisting of a projection and clustering chain was

used to achieve this mean. The parameters can be

selected manually or with the help of a genetic optimizer.

With the latter, having more generations increases the

number of pruned events in both the training and

testing sets. By design, the recall on the training set

remained nearly perfect as the number of generations

increased, but the metric decreased on the testing set.

This motivated the use of an ensemble learning model that

aggregates different suboptimal clustering configurations.

Two ensemble models were proposed and tested on the

data split. One removed nearly 70% of events while

removing only 3% of high-risk events, whereas the other,

which was more conservative, removed 55% of the events

while removing no high-risk events. It was emphasized

that the methods for improving F2 upon LRP do not

necessarily do so by lowering the false negative rate.

Because of the focus on weaker models for ensemble

learning, this study did not consider adaptive GAs,

such as Ref. [37]. This may be a path to improve the

implemented framework, along with the consideration

of other dimensionality reduction and clustering

techniques [15]. Other anomaly detection resources [38]

may also be promising for improving this work. Future

research should determine whether this algorithm, or

similar safe pruning methods, can save operational

resources.

Appendix
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Table A1 Explanation of the dataset features referenced in this paper

Feature Explanation

risk Risk of collision in log10 base
time to tca Time from CDM creation to time of closest approach (day)
max risk scaling Max risk scaling factor
mahalanobis distance Mahalanobis distance
miss distance Relative position between target and chaser at TCA (m)
relative position r Relative position between chaser and target in radial direction (m)

Table A2 Explanation of the object-specific dataset features referenced in this paper. The format x feature is such that it
refers to the target when x = t and to the chaser when x = c. Orbit determination is abbreviated as OD

Feature Explanation

x j2k inc Inclination (deg)
x cr area over mass Solar radiation coefficient
x sedr Energy dissipation rate (W/kg)
x obs used Number of observations used in OD
x residuals accepted OD residuals
x time lastob start Start of the time interval in days of the last accepted observation used in OD
x time lastob end End of the time interval in days of the last accepted observation used in OD
x position covariance det Determinant of the state covariance
x sigma t Along-track position standard deviation (m)
x sigma tdot Along-track velocity standard deviation (m/s)
x sigma ndot Cross-track velocity standard deviation (m/s)
x ctdot r Covariance in along-track velocity and radial position
x cndot t Covariance in cross-track velocity and along-track position
x cndot rdot Covariance in cross-track velocity and radial velocity

Tables A1 and A2 present the different features used in

this study. A more exhaustive list of features is available

on the competition website①. The reference frame in the

data is a local (different for chaser and target) radial,

along-track and cross-track frame. It is also commonly

referred to as radial tangential normal (RTN) frame.
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