
1

A Lightweight and Efficient Control Center Based on

Modern technologies

Nicolas Humeau* and Thibault Gateau*

*Institut Supérieur de l’Aéronautique de l’Espace (ISAE-SUPAERO), Toulouse, France

E-mail: {nicolas.humeau,thibault.gateau}@isae.fr

Nicolas Humeau and Thibault Gateau are both ground segment engineer on CubeSats

projects at ISAE-SUPAERO which is part of the Toulouse University Space Centre (CSUT).

I. Nomenclature

1U, 3U,12U Number of « cube » unit of the nanosatellite (one, three or twelve)

AIT Assembly Integration Test

CNES Centre National D’Etudes Spatiales (French Space Agency)

CNRS Centre National de Recherche Scientifique (French National Scientific Research Institute)

CSUT Centre Spatial Universitaire de Toulouse (Toulouse University Space Centre)

ECSS European Cooperation for Space Standardization

ENAC Ecole Nationale de L’aviation Civile (French Engineering School)

GUI Graphical User Interface

INSA Institut National des Science Appliquée (French Engineering School)

ISAE-SUPAERO Institut Supérieur de l’Aéronautique et de l’Espace (French Aerospace Engineering School)

LAAS Laboratoire d'Analyse et d'Architecture des Systèmes (French Resarch Lab)

ONERA Office National d’Etudes et de Recherche Aérospatiales (The French Aerospace Lab)

OOP Object-oriented programming

POC Component-oriented programming

PUS Packet Utilization Standard

SCC Simple Control Center

SDB System Data Base

UPS Université Paul Sabatier (Toulouse University)

VKI Von Karman Institute

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

 2018 SpaceOps Conference

 28 May - 1 June 2018, 2018, Marseille, France

 10.2514/6.2018-2634

 Copyright © 2018 by ISAE-SUPAERO, Nicolas HUMEAU, Thibault GATEAU. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 SpaceOps Conferences

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2018-2634&domain=pdf&date_stamp=2018-05-25

2

II. Introduction

 The Toulouse University Space Centre (CSUT) is a scientific interest group bringing together various training

organizations (ISAE-SUPAERO, ENAC, INSA, Toulouse University Paul Sabatier) and research establishments

(ONERA, LAAS-CNRS, IRAP), with the support of CNES. The CSUT hosts space projects (nanosatellites, CanSat,

micro launchers...) carried out by students, from the upstream study phases to the realization and operation of

orbital systems. In particular the following CubeSats projects are at study right now:

1. Entry-Sat – 3U

a. Study of atmospheric reentry

b. Phase D
c. ISAE-SUPAERO / VKI

2. Eye-Sat – 3U

a. Study of zodiacal light

b. Phase D

c. CNES / ISAE-SUPAERO / ENAC / Paris Sud Cachan

3. Nymph – 3U

a. Study of optical fiber aging

b. Phase B

c. ISAE / LAAS / UPS / Thales Alenia Space

4. Atise – 12U

a. Study of boreal aurora

b. Phase B

c. CSUT / CSUG (University Space Center of Grenoble)

5. Spectra – 3U

a. Monitoring of radiofrequency spectrum

b. Phase 0

c. CSUT / ENSTA-Bretagne

 Moreover, the CSUT hosts a generic command/control center for nanosatellites. This control center is in charge

of generating orders for the satellite, monitoring its visibility from the ground and computing orbital position. It will

be used for the first time to control and monitor the Eye-Sat
1
 nanosatellite, developed by CNES interns, which is

currently in the integration phase.

Eye-Sat is a triple (3U) CubeSat planned for launch in early 2019 that will provide a survey of the zodiacal light

(the light scattered by interplanetary dust cloud) leading to a better understanding of the properties and origins of its

particles. It is a modern platform using the latest technologies (see chapter 4) from the CNES, with academics and

pedagogical purpose.

To fulfill the mission, Eye-Sat has high expectation specification in regard with CubeSats standards on-board

software: based on the Packet Utilization Standard (PUS) from ECSS the flight software has many requirements like

high speed downlink for housekeeping telemetry, on-board scheduling for telecommands, on-flight software

reloading, etc. The on-board software is using the latest CNES embedded command-control software (the libPUS

library). Users and students should also be able to operate it easily: light installation manual, light user manual,

great graphic user interface. Thus the ground segment control center need to match this features to make this on-

board requirements possible, testable, and operable. Literature reveals few existing solutions (Open MCT
2
,

Cosmos Ball Software
3
, QuantumCDM

7
) often proprietary and /or mission specific and to our knowledge, no

implementation of control center with such features currently exists at CNES. Solutions for classical satellite

operations are not adapted either (proprietary, high complexity, cost to deploy and maintain).

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

3

III. The need and the users

 Consequently, after studying various solutions and carrying out a number of tradeoffs, we decided to develop a

new software. But before embarking on a new development we did a thorough analysis of the need and users.

 The initial need is quite different from “big satellite” project since this control center software is not meant to be

used just for operation but also for flight software validation and verification, for assembly, integration, test (AIT)

phase and for Test Benches validation. This is a key point: on this type of small project, we don’t have enough

resources to develop specific software for each phase. Using the same software for OBS, AIT, and operation is a

response for it.

It means that when we first thought about the architecture of the software we had to take into account different

user needs and not just operational and we had to think out-of-the-box in order to anticipate what could be the

perfect architecture in order to not redevelop and share a maximum of features. Here is a list of the user that we

identified:

1. Students (that can take or assist all the followings roles)

2. Flight software developer

3. Flight software integrator

4. Assembly, test, integration engineer

5. Attitude control law developer

6. Test bench developer

7. Test bench validator

8. Ground software developer

9. Operator

 So what we first did before starting any development activity was building an architecture for the back-end and

the front-end that would match the needs for all these profiles. avoiding re-developpments as features are common

between many users. Therefore, main efforts were lead during initial application components architecture design in

order to make it flexible and modular.

 The key was really to anticipate as much as possible when we built the application components architecture and

object model. Redevelopment cost increases exponentially as you go to through the classic phases: development,

unit test, integration test, and production. So anticipation was a key in order to start a project on the right way and

create a coherent architecture that best reflects the business logic.

 Having a flexible and modular architecture may seem nonconcrete and over-abstract, but it is really the key that

has allowed us to build coherent base software that reduced as much as possible redevelopment and evolution costs.

So actually it was really important to understand user needs at first in order to put all the chances on our side.

 The software also had to be as generic as possible as it will be used in multiple CubeSats projects (not only Eye-

sat). That leads us to use standards in an extensive manner:

1. XTCE standard for the System Database (SDB) - CCSDS

2. Space Packet Protocol as a base for core implementations - CCSDS

3. Packet Utilization Standard for monitoring and control definition - ECSS

4. Tm Transfer Frame standard - CCSDS

5. Tc Transfert Frame standard - CCSDS

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

4

There is a gap between respecting a standard and real world implementation. Some elements were not induced by

standards (such as length of secondary headers, type of CRC, etc.) but developments were made to let them

configurable in order ensure that future projects would not be restricted by it.

IV. A solution : Simple Control Center (SCC)

As explained before, we choose to develop a new control center software named SCC based on modern

technologies in order to fulfill the needs explained above. Everything is built around Dropwizard
4
 framework: it

provides us light and production proven web server with Jetty, easy central configuration management system,

Restful API with Jersey to communicate with the front-end and to export data, powerful logging system, and some

other java features: Google Guava framework, Joda Time library with powerful time converters, Java Database

Interface (JDBI) for easy database SQL access. Dropwizard is not just an assembly of existing java libraries.

Dropwizard ensures the integration of this toolkit so that our applications remain permanently production-ready and

stable and so allowing us to focus on the business logic. Moreover using java as numerous advantages for this type

of “industry” level project:

1. Strong typing give us a lot of security in the development process
2. Scientific production ready libraries richness, in particular for space-mechanics
3. Huge community and experience return on the internet
4. Richness and added value of industrial level quality tools and test framework that no other languages

has reach nowadays
5. Multi-threaded easy to use framework

6. Project management tools like maven

SCC's architecture is composed by different components. Each component provides a major functionality

expected by the tool. Component-oriented programming (POC) is widely used in computing. The principle is

simple: the software is divided into logical elementary bricks. In this way the readability and maintainability of the

code is considerably improved. Indeed, by making each logical element abstract and transparent in relation to the

others, we ensure that the evolution or modification of one of the components will not impact the code of another

component. This is where we get modularity and flexibility.

The POC should not be confused with the object-oriented programming (OOP), which have similarities but do

not operate at the same level. The OOP is equivalent to defining modules at the level of code and computer

language, while the POC intervenes at the level of the overall architecture of the system/project. Component-

oriented programming is very often used in conjunction with object-oriented programming. Here is a summary of

our component oriented architecture:

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

5

We are using two main technologies: Dropwizard with java for the back-end, Angular
5
 with Typescript for the

front-end. This architecture has proven to be very productive and saves us a lot of time. On the back-end we have

the java object model which is representing the business logic, then with Dropwizard we expose the data seamlessly

trough a REST API. The front-end or any other data user can consume the API. Here a summary of the

technological architecture:

We are using the MVVM pattern (Model–View–ViewModel). It means that there is a separation between the

graphical user interface (GUI) model and back-end logic (the data model). The view model is responsible for

exposing the data objects from the back-end model in such a way that they are easily managed and presented for

the front-end. In our case there are really small differences between the model and the ViewModel. The ViewModel

is using a lot of the main features from the model and just turns it into object that are more easily manageable for

the front-end.

The front-end has a Typescript object model based on the ViewModel and the back-end offers an API which is

also based on the ViewModel but in java. Everything is going throw a JSON auto generation mechanism, thus the

developer’s work is really effortless because as long as the object from Typescript and Java matches the back-end

and front-end can communicate natively without developing or adding an over-layer. The pros of choosing

Typescript for the front-end are multiples:

1. Automatic Object Mapping makes communication with back-end seamlessly

2. Compilation language brings the force of strong typing to our complex application. It improves front-

end debugging without having to go throw the browser to find tricky issues

3. As it compiles in JavaScript it can do native JavaScript so we can benefit from all its richness

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

6

V. Modern technologies in space projects

To our knowledge conventional space projects are always behind schedule in matter of new computer science

technologies and so they make little use of it when it gets out. But there are logical reasons for that:

1. Firstly space projects for big satellites are usually long term project using the classic V-cycle, meaning

that technologies in use on the project may have been selected years/decades before. For them it is not a

problem if a software is already 20 years old, as long as it does the job.

2. Secondly on these projects stability and quality have always been the number one constraints and

budgets have always adapted to these constraints.

3. Thirdly human resources have also never been a constraint and it always adapt to projects, so the high

complexity of implementing and operating in production traditional old software solutions has never

been an issue.

 The point is that with CubeSats and nanosatellite the paradigm is fully reversed. The philosophy for CubeSat

projects is the opposite: the main drivers and constraints on the development are to do cheap, fast, and efficient and

with fewer human resources. Stability and quality are still are study of course but they are not the main drivers.

This changes everything if we deal with computer science. Nowadays ground computer science technologies

evolve at an impressive speed, but above all each evolution brings each time a great added value. That is why there

is a huge interest in term of in terms of cost reduction, quality in software development, human resources

limitation and user experience improvement. All these factors make even more sense when you associate them

with CubeSats, because they are seeking for the same features.

 What we learned on our projects is that space missions are really missing something huge if not using latest

computer science technologies. Why? Because it brings so much more in the following fields: quality, testing

environment, user experience, development environment, production environment, that using them really makes

your project going to another level. It makes a huge difference both on the mission success probability and the cost

reduction of the project.

Here is a non-exhaustive list of these computer science technologies we are using:

1. Dropwizard : with the benefits mentioned above

2. Angular : with the benefits mentioned above

3. Maven : for dependency and project management

4. Bootstrap front-end framework: this great library is the world's most popular front-end component

library. It provide tested and ready to use component with classic dynamic behavior

5. SonarLint : This open-source tool automatically detects complex bugs and considerably improves code

quality. It is one of the most advanced tools on this subject.

6. GitLab Continuous Integration platform: this is a key point, if you take the time at first on your

project to setup proper continuous integration environment, it will without doubt save you more time

than you could imagine. Of course setting up continuous integration is easier if you are working with

the above tools like java, maven or angular.

7. Docker: it enables true independence between applications, infrastructure, developers, and operators. It

gives the easily run continuous deployment both for staging and production.

You may wonder: we are just talking about the control center software, but why would this little part of the

system have so much impact on the project? The answer is simple: as I said before this tool is not only used for

operation, the primary main activity is also being a test mean for system. Actually there are numerous of tests that

go through the control center software so it is actually the main testing mean of the system. Here are configuration

examples of how we use it to test our satellite:

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

7

Simple Control Center

On Orbit
Operations

Flight Software
Verification &

Validation

Serial
Space Packets

TM/TC

Tcp/Ip
CADU and CLTU

TM/TC

Assembly, test,
integration

Tcp/Ip
Space Link
Extension

- Validation of the ACDS system
- Automation with procedures
- Interface with transceiver
simulation hardware cards

Simulation Bench
Validation of ADCS

- Interfaces with S-Band ground
station through the SLE protocol
- Automation with procedures

- Interfaces with a radio frequency
rack in order to operate the satellite
in the clean room
- Electronic test of equipments
- End-to-End communication tests

- Validation of applicative layer of
the on-board software
- Test automation for non regression

We’ve get to a point where the SCC software has really became a facilitator for us and really saves a lots of

time and pain for our engineers. Whereas if you look to classic software on big project: some of them they really are

white elephants that ask to the project more human resources, more time, and more budget than it gives you in

return.

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

8

VI. Conclusion

The conclusion is a feedback about what we experienced.

1. Reusing current knowledge and computer science modern technologies in space project has a

priceless value. It brings so many added values to the project that it should always be followed closely

by space engineers.

2. The control center which can be the main testing mean must be a facilitator in the development

process. It is highly recommended to use the same core software to ensure various activities: flight

software verification and validation, satellite assembly, integration, and test, simulation test bench for

attitude determination and control system validation, and operation once in orbit. Sharing these

activities will both make the software richer and testing activities easier.

3. In order to make it multi-mission and reusable between projects you need to find the right balance

between functionality, configurability, and genericity. This balance is really a very subtle point that

must be addressed with patience and rigor when defining the system architecture.

References

Internet References

[1] Eye-Sat, https://janus.cnes.fr/fr/JANUS/Fr/eye-sat.htm

[2] Open MCT, https://nasa.github.io/openmct

[3] Ball Aerospace Cosmos, http://cosmosrb.com

[4] Dropwizard, http://www.dropwizard.io/1.1.2/docs

[5] Angular 2, https://angular.io

[6] QuantumCDM, http://www.kratostts.com/products/satellite-and-space/quantumcmd

[7] MVVM, https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

D
ow

nl
oa

de
d

by
 I

SA
E

 o
n

A
ug

us
t 2

1,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
26

34

https://janus.cnes.fr/fr/JANUS/Fr/eye-sat.htm
https://nasa.github.io/openmct
http://cosmosrb.com/
http://www.dropwizard.io/1.1.2/docs
https://angular.io/
http://www.kratostts.com/products/satellite-and-space/quantumcmd

