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Abstract: Currently, in order to increase both safety and performance of human-machine
systems, researchers from various domains gather together to work towards the use of operators’
mental state estimation in the systems control-loop. Mental state estimation is performed using
neurophysiological data recorded, for instance, using electroencephalography (EEG). Features
such as power spectral densities in specific frequency bands are extracted from these data and
used as indices or metrics. Another interesting approach could be to identify the dynamic model
of such features. Hence, this article discusses the potential use of tools derived from the linear
algebra and control communities to perform an approximation of the neurophysiological features
model that could be explored to monitor the engagement of an operator. The method provides
a smooth interpolation of all the data points allowing to extract frequential features that reveal
fluctuations in engagement with growing time-on-task.
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1. INTRODUCTION

Human-machine systems integrate the functions of one
or multiple operators and one or multiple machines. This
integration brings upsides and downsides from both sub-
systems. The machine can fail, as well as the human. Cur-
rently, in order to increase both safety and performance of
human-machine systems, researchers from various domains
gather together to work towards the use of operators’ men-
tal state estimation in the control-loop of such multi-agent
systems. Several mental states are relevant to estimate
when considering risky situations such as UAV (Unmanned
Aircraft Vehicle) or nuclear monitoring, or driving and
flying aircrafts applications. Amongst these mental states,
one should consider attentional and cognitive resource
engagement. In particular, human engagement fluctuates
during the operational task, and depends on several factors
that include fatigue and vigilance. These factors can give
rise to mind wandering episodes (Roy et al., 2016).

An objective and unintrusive way to perform mental
state monitoring is generally to use neurophysiological
data recorded for instance using electroencephalography
(EEG). For engagement monitoring, the classical features
used are power spectral densities in specific frequency
bands extracted from EEG data. Hence, the classical drop
in performance observed at the behavioral level is usually
mirrored by an increase in power in low frequency bands
(θ [4 − 8]Hz and α [8 − 12]Hz) and a decrease in the
so-called ’engagement ratio’ (β/(θ + α); β [13 − 30]Hz)
(Pope et al., 1995; Klimesch, 1999; Berka et al., 2007).

These features are either used directly as indices, or more
advanced analyses are performed on them, such as trend
analysis or classification (van Erp et al., 2012; Charbonnier
et al., 2016).

The existing systems are not optimal, and new methods
should be investigated to answer a need for robust and
efficient online estimation of an operator’s mental state.
Another approach would be to identify / approximate
the dynamical model of these neurophysiological features.
Hence, this article discusses the potential use of data-
driven model approximation tools derived from the linear
algebra and control communities to perform a model ap-
proximation of these features that can be used to estimate
and to monitor the engagement of an operator. The ar-
ticle presents a Loewner-based method and provides an
example of its application on neurophysiological features
extracted from the EEG signal. These tools mainly consist
in the frequency-domain data interpolation and dynami-
cal system-oriented norm computation. As they are quite
standard in the control community, these latter will simply
be refered to and attention will be given on the applicative
side of the problem.

2. GENERAL PROCEDURE

2.1 Overview

Based on the data collected from the EEG, denoted y(t),
the purpose of the proposed approach is to identify a
dynamical model valid over the time window [tk tk + tm]



(tm being the time window duration), denoted Ĥtk , and
to apply dynamical system-oriented tools to perform the
analysis. Obviously, as such a model is valid over the
considered time window only, the identification procedure
should be computed at multiple times indexes tk. The
following procedure exposes the general idea.

(1) Measure the EEG time-domain data over the con-
sidered window [tk, tk + tm], ytk(t) during tm sec-
onds, and compute its discrete Fourier transform
F
(

ytk(t)
)

= Φi, for i = 1, . . . , N , over the considered
frequency range [fmin fmax] (fmin ≤ fi ≤ fmax). One
then has the following data :

{ı2πfi,Φi} for i = 1, . . . , N (1)

where ı =
√
−1, and Φi ∈ C

ny×nu corresponds to the
frequency response at a given frequency fi, ny and
nu being respectively the number of measured EEG
output (here 2) and input signals (here 1).

(2) Based on the {ı2πfi,Φi} data set, apply the Loewner
algorithm and obtain the descriptor dynamical sys-
tem Ŝtk (see Mayo and Antoulas (2007)):

Ŝtk :

{

Ê ˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t)
(2)

equipped with the frequency response Ĥtk(s) =
C(sE −A)−1B, which interpolates the data (1). Due
to format constraints, technical details related to the
interpolatory framework are briefly pictured after-
wards in this section.

(3) Based on the interpolation function Ĥtk and its real-

ization Ŝtk , compute the different metrics of interest
using frequency-limited norms detailed in Vuillemin
et al. (2014)

θ(tk) = ||Htk ||H2,[4 8]

α(tk) = ||Htk ||H2,[8 12]

β(tk) = ||Htk ||H2,[12 30]

(3)

(4) Set k ← k+1 and repeat until experiment is finished.

2.2 Model interpolation in the Loewner framework

As exposed in the above four step approach, the Loewner
framework plays a pivotal role. This latter, which belongs
to the so-called interpolatory methods, is not recalled here
but interested readers should refer to Mayo and Antoulas
(2007) or Antoulas et al. (2016) for additional details. Let
us just remind here the starting point which consists in
considering that we are given input/output data obtained
from experimental measurements or from any operational
simulation. Here we consider that these data (1), collected
using an EEG, in the frequency-domain, can be split as
follows:

µ1, . . . , µn = ı2π[f1, f1, f3, f3 . . . ]
v∗

j = [Φ1,Φ1,Φ3,Φ3 . . . ]

λ1, . . . , λn = ı2π[f2, f2, f4, f4 . . . ]
wi = [Φ2,Φ2,Φ4,Φ4 . . . ]

. (4)

Then, the resulting problem is reformulated as follows:

Problem 1. (Data-driven interpolation). Given left inter-
polation driving frequencies {µj}qj=1

∈ C with left output

or tangential directions {lj}qj=1
∈ C

ny , producing the left

responses {vj}qj=1
∈ C

nu and right interpolation driving

frequencies {λi}ki=1
∈ C with right input or tangential

directions {ri}ki=1
∈ C

nu , producing the right responses

{wi}ki=1
∈ C

ny , find a (low order) system Ŝ such that

the resulting transfer function Ĥ(s) is an (approximate)
tangential interpolant of the data, i.e. which satisfies the
following left and right interpolation conditions:

l∗jĤ(µj) = v∗

j

for j = 1, . . . , q

}

and

{

Ĥ(λi)ri = wi

for i = 1, . . . , k
. (5)

Note that the interpolation points and tangential direc-
tions are determined by the problem. Moreover, let us
assume that µj and λi are distinct and the approximate

model Ĥ(s) is equipped with the following realisation (2):

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t).

In Mayo and Antoulas (2007) or Antoulas et al. (2016),
details are given to address the above interpolatory model
approximation Problem 1 which aims at seeking for a
reduced order model Ŝ whose transfer function Ĥ(s)
matches the frequency-domain points obtained in simu-
lation or in any experimental set-up (for example, the
experimental data such as the EEG).

3. DATABASE

The data used to assess the relevance of this system-based
approach for neurophysiological data approximation is a
set of 60 minutes of EEG signals recorded on a healthy
participant who performed a monotonous UAV monitoring
task. This data consists of the signal sampled at 512 Hz
recorded from two EEG electrodes, labelled Pz and Oz

with respect to their standard placement on the scalp. The
analysis is performed using 5-minute windows with a one-
minute overlap and the FFT is computed on 300 samples.
Here the data are not filtered nor denoised for ocular
artifacts, since the final analysis only focuses on frequency
bands that are considered immune to such artifacts. For
more details on the experimental protocol and acquisition
procedure see Roy et al. (2016).

The behavioral results obtained for this particular partic-
ipant reveal an increase in response time to alarms with
growing time-on-task (i.e. 1st alarm: 2390 ms, 2nd alarm:
2866 ms, 3rd alarm: 3110 ms; for time of occurrence see
vertical lines in Figure 3). This performance degradation
ascertains the occurence of a progressive decrease in en-
gagement with time-on-task. However this phenomenon
is not linear, as there is an increase in performance for
the last alarm (4th alarm: 2797 ms). This phenomenon
emphasizes the need for a continous monitoring of the
operator’s engagement fluctuations. In order to perform
an objective and unintrusive engagement monitoring, sev-
eral frequential features are extracted from the identified
model: the power in three frequency bands (θ [4 − 8] Hz,
α [8 − 12] Hz, and β [13 − 30] Hz), and the classical
engagement ratio β/(θ+α), applied on two EEG outputs,
namely Pz and Oz.

4. PRELIMINARY RESULTS

4.1 EEG-oriented data-driven model approximation

After applying the Fourier transform from the measured
data, one obtains the frequency domain data set. Then,



when applying the Loewner framework over the frequency
range [4−30] Hz (i.e. that covers the theta, alpha and beta
ranges), the following result can be observed, illustrating
the approximation of 8 frozen frequency-domain data, col-
lected at different time instants (see Figure 1). More specif-
ically, Figure 1 illustrates the frequency response gains for
varying time instants of the experiment (varying colour
dots). Then, the interpolated model Htk (k = 1, . . . , 8),
obtained with the Loewner framework, are plotted in solid
lines (with varying colours).
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Fig. 1. Frequency response gain as a function of time.
Pz(f, t) (top) and Oz(f, t) (bottom). The data col-
lected (after Fourier Transform) correspond to eight
5-minute windows and are displayed by dots while the
interpolating models Ĥtk are displayed by solid lines.

Interestingly, the interpolatory framework clearly shows to
well reproduce the data collected with an order (e.g. state-
space dimension) close to 70. The interpolated solid lines
perfectly match all the frozen frequency data and per-
form a smooth interpolation in between points. Without
entering into details, this perfect matching is indeed one
of the main properties of the Loewner framework, which
interpolates data in the so-called barycentric Lagrange
basis. The result, for each frozen time configuration, is
a dynamical model denoted Ĥtk .

4.2 Frequency-domain metrics computations

Then, as exposed in the general procedure, one is now
interested in computing three different frequency-domain
metrics in order to evaluate the state of the operator. This
evaluation should help in an online monitoring of the men-
tal state of the human operator agent in human-machine
systems. As explained before, the classical features used
are power spectral densities in specific frequency bands
extracted from the EEG data. It was expected that a
drop in performance (i.e. increase in response-time) ob-
served at the behavioral level should be mirrored by an
increase in power in low frequency bands (θ [4− 8]Hz and
α [8 − 12]Hz) and a decrease in the ’engagement ratio’
(β/(θ + α)) (Pope et al., 1995; Klimesch, 1999; Berka
et al., 2007; Charbonnier et al., 2016). In Figure 2 one
can observe an increase in the power of the α and θ bands
after 25 minutes, with respect to the first 5 minutes of the
experiment, followed by a decrease after 50 minutes. This
result reflects adequatly the fluctuation of the human’s
operator engagement detailed above, with a drop in the
performance metric (i.e. response time) between 25 and
50 minutes (i.e. 1st alarm: 2390 ms, 2nd alarm: 2866 ms,
3rd alarm: 3110 ms; for time of occurrence see vertical lines
in Figure 3), with an increase at the end of the session (4th
alarm: 2797 ms).

As regards the ’engagement ratio’, depicted in Figure 3,
it can be seen that the average ratio for each 20-minute
block decreases for the two electrodes with respect to
the beginning of the experiment. In particular, this ratio
decreases in the second block for the Pz electrode and in
the third block for the Oz electrode. Therefore the ratio
extracted from the Pz electrode seems more relevant to
monitor engagement since its increase in the last block is
mirrored by the final increase in behavioral performance
of the participant. This is as could be expected since the
activity at the Pz electrode site above the parietal cortex is
thought to mainly reflect attentional engagement while the
activity at the Oz electrode site located above the occipital
cortex should mainly reflect visual processing.
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Fig. 2. Temporal evolution of the power spectral density
in the theta, alpha and beta frequency bands relative
to the first 5 minutes for both the Pz (top) and Oz

(bottom) electrodes.
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Fig. 3. Temporal evolution of the EEG engagement index β/(θ+α) relative to the first 5 minutes for both the Pz (solid
line) and the Oz (dotted line) electrodes. The horizontal lines represent the index average over each of the three
20-minute blocks.

5. CONCLUSIONS

Although work has been done to progress towards efficient
mental state monitoring systems, new methods should be
investigated to perform robust and efficient estimations.
Hence, in this brief we experiment the use of a frequency
oriented identification model and measurement tools to
analyse EEG data collected during a prolonged UAVmoni-
toring simulated task. The use of objective and unintrusive
measurements such as the ones performed using EEG
has been recently promoted by a large literature. The
preliminary results show to be quite consistent with the
literature as drops in performance at the behavioral level
are reflected by an increase in power in low frequency
bands and a decrease in the classical ’engagement ratio’
(Pope et al., 1995; Klimesch, 1999; Berka et al., 2007;
Charbonnier et al., 2016). This is promising for further
investigations and the authors believe that such an ap-
proach should be explored in order to perform an online
estimation of the operator’s mental state. The ultimate
goal would be to adequatly adapt the interaction between
human and machines in function of the estimated system’s
state (i.e. both human and machine states).

This adaptation using physiological data falls into the ’bio-
cybernetical loop’ domain described by Fairclough (2009).
However promising, to this day this area of research fails
to provide efficient closed-loop systems. The principal dif-
ficulty is that the currently proposed methods and metrics
are strongly related to the underlying task performed by
the human operator. In this sense, the authors claim for
more research in this direction. A first step would be to
implement the method proposed in this paper to perfrom
online short-term predictions.
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